These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34276578)

  • 1. Lower Funneling Pathways in
    Poirier W; Ravenel K; Bouchara JP; Giraud S
    Front Microbiol; 2021; 12():630753. PubMed ID: 34276578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.
    Semana P; Powlowski J
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin-Modifying Enzymes in
    Poirier W; Bouchara JP; Giraud S
    J Fungi (Basel); 2023 Jan; 9(1):. PubMed ID: 36675925
    [No Abstract]   [Full Text] [Related]  

  • 4. The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and
    Spence EM; Scott HT; Dumond L; Calvo-Bado L; di Monaco S; Williamson JJ; Persinoti GF; Squina FM; Bugg TDH
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32737130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi.
    Lubbers RJM; Dilokpimol A; Visser J; Mäkelä MR; Hildén KS; de Vries RP
    Biotechnol Adv; 2019 Nov; 37(7):107396. PubMed ID: 31075306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1.
    Dos Santos Melo-Nascimento AO; Mota Moitinho Sant Anna B; Gonçalves CC; Santos G; Noronha E; Parachin N; de Abreu Roque MR; Bruce T
    PLoS One; 2020; 15(12):e0243739. PubMed ID: 33351813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol.
    Pometto AL; Sutherland JB; Crawford DL
    Can J Microbiol; 1981 Jun; 27(6):636-8. PubMed ID: 7260738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic study of an environmental isolate of
    Morales LT; González-García LN; Orozco MC; Restrepo S; Vives MJ
    Stand Genomic Sci; 2017; 12():71. PubMed ID: 29225727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells.
    Mina S; Staerck C; d'Almeida SM; Marot A; Delneste Y; Calenda A; Tabiasco J; Bouchara JP; Fleury MJJ
    Fungal Biol; 2015 Dec; 119(12):1322-1333. PubMed ID: 26615753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis unveils the adaptative mechanisms of
    Vandeputte P; Dugé de Bernonville T; Le Govic Y; Le Gal S; Nevez G; Papon N; Bouchara JP
    Comput Struct Biotechnol J; 2020; 18():3468-3483. PubMed ID: 33294141
    [No Abstract]   [Full Text] [Related]  

  • 11. Transcriptional profiling of Scedosporium apiospermum enzymatic antioxidant gene battery unravels the involvement of thioredoxin reductases against chemical and phagocytic cells oxidative stress.
    Staerck C; Tabiasco J; Godon C; Delneste Y; Bouchara JP; Fleury MJJ
    Med Mycol; 2019 Apr; 57(3):363-373. PubMed ID: 29889264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Lignin Catabolism Potential of Soil-Derived Lignocellulolytic Microbial Consortia by a Gene-Centric Metagenomic Approach.
    Díaz-García L; Bugg TDH; Jiménez DJ
    Microb Ecol; 2020 Nov; 80(4):885-896. PubMed ID: 32572536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum.
    Brinkrolf K; Brune I; Tauch A
    Genet Mol Res; 2006 Dec; 5(4):773-89. PubMed ID: 17183485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of phenol and p-cresol by the hyphomycete Scedosporium apiospermum.
    Claussen M; Schmidt S
    Res Microbiol; 1998 Jun; 149(6):399-406. PubMed ID: 9766239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and biochemical characterization of gentisate 1,2-dioxygenase from Escherichia coli O157:H7.
    Adams MA; Singh VK; Keller BO; Jia Z
    Mol Microbiol; 2006 Sep; 61(6):1469-84. PubMed ID: 16930152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the emerging human pathogen Scedosporium prolificans by using a species-specific monoclonal antibody that binds to the melanin biosynthetic enzyme tetrahydroxynaphthalene reductase.
    Thornton CR; Ryder LS; Le Cocq K; Soanes DM
    Environ Microbiol; 2015 Apr; 17(4):1023-38. PubMed ID: 24684242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental Screening for the Scedosporium apiospermum Species Complex in Public Parks in Bangkok, Thailand.
    Luplertlop N; Pumeesat P; Muangkaew W; Wongsuk T; Alastruey-Izquierdo A
    PLoS One; 2016; 11(7):e0159869. PubMed ID: 27467209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of phenylbenzoate and some of its derivatives by Scedosporium apiospermum.
    Claussen M; Schmidt S
    Res Microbiol; 1999; 150(6):413-20. PubMed ID: 10466410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-automated repetitive sequence-based PCR amplification for species of the Scedosporium apiospermum complex.
    Matray O; Mouhajir A; Giraud S; Godon C; Gargala G; Labbé F; Rougeron A; Ballet JJ; Zouhair R; Bouchara JP; Favennec L
    Med Mycol; 2016 May; 54(4):409-19. PubMed ID: 26486722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.