BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 34276691)

  • 1. HLA-G/ILTs Targeted Solid Cancer Immunotherapy: Opportunities and Challenges.
    Lin A; Yan WH
    Front Immunol; 2021; 12():698677. PubMed ID: 34276691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prognostic Significance of Immune Checkpoints HLA-G/ILT-2/4 and PD-L1 in Colorectal Cancer.
    Chen QY; Chen YX; Han QY; Zhang JG; Zhou WJ; Zhang X; Ye YH; Yan WH; Lin A
    Front Immunol; 2021; 12():679090. PubMed ID: 34054869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HLA-G: A New Immune Checkpoint in Cancer?
    Krijgsman D; Roelands J; Hendrickx W; Bedognetti D; Kuppen PJK
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32630545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Molecular and Functional Characteristics of HLA-G and the Interaction with Its Receptors: Where to Intervene for Cancer Immunotherapy?
    Attia JVD; Dessens CE; van de Water R; Houvast RD; Kuppen PJK; Krijgsman D
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33213057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of HLA-G Expression in Cancers: Facing the Challenges.
    Lin A; Yan WH
    Front Immunol; 2018; 9():2164. PubMed ID: 30319626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intratumor Heterogeneity of HLA-G Expression in Cancer Lesions.
    Zhang X; Lin A; Han QY; Zhang JG; Chen QY; Ye YH; Zhou WJ; Xu HH; Gan J; Yan WH
    Front Immunol; 2020; 11():565759. PubMed ID: 33329527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble HLA-G and HLA-G Bearing Extracellular Vesicles Affect ILT-2 Positive and ILT-2 Negative CD8 T Cells Complementary.
    Schwich E; Hò GT; LeMaoult J; Bade-Döding C; Carosella ED; Horn PA; Rebmann V
    Front Immunol; 2020; 11():2046. PubMed ID: 32973812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Transcriptomic Analysis Reveals the Role of the Immune Checkpoint HLA-G Molecule in Cancers.
    Xu HH; Gan J; Xu DP; Li L; Yan WH
    Front Immunol; 2021; 12():614773. PubMed ID: 34276642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HLA genotyping meets response to immune checkpoint inhibitors prediction: A story just started.
    Ivanova M; Shivarov V
    Int J Immunogenet; 2021 Apr; 48(2):193-200. PubMed ID: 33112034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo evidence that secretion of HLA-G by immunogenic tumor cells allows their evasion from immunosurveillance.
    Loumagne L; Baudhuin J; Favier B; Montespan F; Carosella ED; Rouas-Freiss N
    Int J Cancer; 2014 Nov; 135(9):2107-17. PubMed ID: 24623585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of cancer cell-expressed HLA class I molecules and their immunopathological implications.
    Kubo T; Asano S; Sasaki K; Murata K; Kanaseki T; Tsukahara T; Hirohashi Y; Torigoe T
    HLA; 2024 May; 103(5):e15472. PubMed ID: 38699870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HLA-G Neo-Expression on Tumors.
    Loustau M; Anna F; Dréan R; Lecomte M; Langlade-Demoyen P; Caumartin J
    Front Immunol; 2020; 11():1685. PubMed ID: 32922387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T-cell-based Immunotherapies for Haematological Cancers, Part A: A SWOT Analysis of Immune Checkpoint Inhibitors (ICIs) and Bispecific T-Cell Engagers (BiTEs).
    Rallis KS; Hillyar CRT; Sideris M; Davies JK
    Anticancer Res; 2021 Mar; 41(3):1123-1141. PubMed ID: 33788704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors.
    Ahn R; Ursini-Siegel J
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of HLA-G in Human Papillomavirus Infections and Cervical Carcinogenesis.
    Xu HH; Yan WH; Lin A
    Front Immunol; 2020; 11():1349. PubMed ID: 32670296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer.
    Ge Z; Peppelenbosch MP; Sprengers D; Kwekkeboom J
    Front Immunol; 2021; 12():699895. PubMed ID: 34367161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of checkpoint receptor PVRIG unleashes anti-tumor immunity of NK cells in murine and human solid tumors.
    Li Y; Zhang Y; Cao G; Zheng X; Sun C; Wei H; Tian Z; Xiao W; Sun R; Sun H
    J Hematol Oncol; 2021 Jun; 14(1):100. PubMed ID: 34174928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.