BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34276718)

  • 1. Comparative Label-Free Quantitative Proteomics Analysis Reveals the Essential Roles of N-Glycans in Salt Tolerance by Modulating Protein Abundance in
    Liu C; Niu G; Li X; Zhang H; Chen H; Hou D; Lan P; Hong Z
    Front Plant Sci; 2021; 12():646425. PubMed ID: 34276718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trimming of N-Glycans by the Golgi-Localized α-1,2-Mannosidases, MNS1 and MNS2, Is Crucial for Maintaining RSW2 Protein Abundance during Salt Stress in Arabidopsis.
    Liu C; Niu G; Zhang H; Sun Y; Sun S; Yu F; Lu S; Yang Y; Li J; Hong Z
    Mol Plant; 2018 May; 11(5):678-690. PubMed ID: 29409894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus.
    Kang JS; Frank J; Kang CH; Kajiura H; Vikram M; Ueda A; Kim S; Bahk JD; Triplett B; Fujiyama K; Lee SY; von Schaewen A; Koiwa H
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5933-8. PubMed ID: 18408158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MNSs-mediated N-glycan processing is essential for auxin homeostasis in
    Xia T; Zhan Y; Mu Y; Zhang J; Xu W
    iScience; 2022 May; 25(5):104298. PubMed ID: 35602943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis.
    Huang KC; Lin WC; Cheng WH
    BMC Plant Biol; 2018 Mar; 18(1):40. PubMed ID: 29490615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars.
    Pi E; Qu L; Hu J; Huang Y; Qiu L; Lu H; Jiang B; Liu C; Peng T; Zhao Y; Wang H; Tsai SN; Ngai S; Du L
    Mol Cell Proteomics; 2016 Jan; 15(1):266-88. PubMed ID: 26407991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of complex N-glycans in plant stress tolerance.
    von Schaewen A; Frank J; Koiwa H
    Plant Signal Behav; 2008 Oct; 3(10):871-3. PubMed ID: 19704526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of the Arabidopsis cbl1 mutant in response to salt stress.
    Shi S; Chen W; Sun W
    Proteomics; 2011 Dec; 11(24):4712-25. PubMed ID: 22002954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex
    Kaulfürst-Soboll H; Mertens-Beer M; Brehler R; Albert M; von Schaewen A
    Front Plant Sci; 2021; 12():635962. PubMed ID: 33767719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d
    Wang C; Zhang P; Jin W; Li L; Qiang S; Zhang Y; Huang L; Wang Z
    J Proteomics; 2017 Jan; 150():18-30. PubMed ID: 27585995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative phospho-proteomics analysis of salt-responsive phosphoproteins regulated by the MKK9-MPK6 cascade in Arabidopsis.
    Liu Z; Li Y; Cao H; Ren D
    Plant Sci; 2015 Dec; 241():138-50. PubMed ID: 26706066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots.
    Passamani LZ; Barbosa RR; Reis RS; Heringer AS; Rangel PL; Santa-Catarina C; Grativol C; Veiga CFM; Souza-Filho GA; Silveira V
    PLoS One; 2017; 12(4):e0176076. PubMed ID: 28419154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.
    Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X
    J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots.
    Liu CW; Hsu YK; Cheng YH; Yen HC; Wu YP; Wang CS; Lai CC
    Rapid Commun Mass Spectrom; 2012 Aug; 26(15):1649-60. PubMed ID: 22730086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis.
    Ma J; Wang D; She J; Li J; Zhu JK; She YM
    New Phytol; 2016 Oct; 212(1):282-96. PubMed ID: 27558752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics analysis reveals that the nuclear cap-binding complex proteins arabidopsis CBP20 and CBP80 modulate the salt stress response.
    Kong X; Ma L; Yang L; Chen Q; Xiang N; Yang Y; Hu X
    J Proteome Res; 2014 May; 13(5):2495-510. PubMed ID: 24689873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular Plant One-Zinc-Finger (VOZ) Transcription Factors Are Positive Regulators of Salt Tolerance in Arabidopsis.
    Prasad KVSK; Xing D; Reddy ASN
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.
    Yang T; Zhang L; Hao H; Zhang P; Zhu H; Cheng W; Wang Y; Wang X; Wang C
    Plant J; 2015 Dec; 84(6):1274-94. PubMed ID: 26603028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass Spectrometry-Based Chemical and Enzymatic Methods for Global Analysis of Protein Glycosylation.
    Xiao H; Suttapitugsakul S; Sun F; Wu R
    Acc Chem Res; 2018 Aug; 51(8):1796-1806. PubMed ID: 30011186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton.
    Peng Z; He S; Gong W; Xu F; Pan Z; Jia Y; Geng X; Du X
    BMC Plant Biol; 2018 Jun; 18(1):128. PubMed ID: 29925319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.