These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34276772)

  • 1. Hypothesis Testing With Rank Conditions in Phylogenetics.
    Long C; Kubatko L
    Front Genet; 2021; 12():664357. PubMed ID: 34276772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothesis tests for phylogenetic quartets, with applications to coalescent-based species tree inference.
    Gaither J; Kubatko L
    J Theor Biol; 2016 Nov; 408():179-186. PubMed ID: 27521524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of SVDquartets and other coalescent-based species tree estimation methods.
    Chou J; Gupta A; Yaduvanshi S; Davidson R; Nute M; Mirarab S; Warnow T
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S2. PubMed ID: 26449249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifiability and Reconstructibility of Species Phylogenies Under a Modified Coalescent.
    Long C; Kubatko L
    Bull Math Biol; 2019 Feb; 81(2):408-430. PubMed ID: 29926380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species trees from consensus single nucleotide polymorphism (SNP) data: Testing phylogenetic approaches with simulated and empirical data.
    Schmidt-Lebuhn AN; Aitken NC; Chuah A
    Mol Phylogenet Evol; 2017 Nov; 116():192-201. PubMed ID: 28743644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four myriapod relatives - but who are sisters? No end to debates on relationships among the four major myriapod subgroups.
    Szucsich NU; Bartel D; Blanke A; Böhm A; Donath A; Fukui M; Grove S; Liu S; Macek O; Machida R; Misof B; Nakagaki Y; Podsiadlowski L; Sekiya K; Tomizuka S; Von Reumont BM; Waterhouse RM; Walzl M; Meng G; Zhou X; Pass G; Meusemann K
    BMC Evol Biol; 2020 Nov; 20(1):144. PubMed ID: 33148176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartet-Based Computations of Internode Certainty Provide Robust Measures of Phylogenetic Incongruence.
    Zhou X; Lutteropp S; Czech L; Stamatakis A; Looz MV; Rokas A
    Syst Biol; 2020 Mar; 69(2):308-324. PubMed ID: 31504977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ILS-Aware Analysis of Low-Homoplasy Retroelement Insertions: Inference of Species Trees and Introgression Using Quartets.
    Springer MS; Molloy EK; Sloan DB; Simmons MP; Gatesy J
    J Hered; 2020 Apr; 111(2):147-168. PubMed ID: 31837265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parsimony and the rank of a flattening matrix.
    Snyman J; Fox C; Bryant D
    J Math Biol; 2023 Feb; 86(3):44. PubMed ID: 36757460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Gene Flow on Coalescent-based Species-Tree Inference.
    Long C; Kubatko L
    Syst Biol; 2018 Sep; 67(5):770-785. PubMed ID: 29566212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quartets enable statistically consistent estimation of cell lineage trees under an unbiased error and missingness model.
    Han Y; Molloy EK
    Algorithms Mol Biol; 2023 Dec; 18(1):19. PubMed ID: 38041123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quartet decomposition server: a platform for analyzing phylogenetic trees.
    Mao F; Williams D; Zhaxybayeva O; Poptsova M; Lapierre P; Gogarten JP; Xu Y
    BMC Bioinformatics; 2012 Jun; 13():123. PubMed ID: 22676320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants.
    Sumner JG; Taylor A; Holland BR; Jarvis PD
    J Math Biol; 2017 Dec; 75(6-7):1619-1654. PubMed ID: 28434023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quarnet Inference Rules for Level-1 Networks.
    Huber KT; Moulton V; Semple C; Wu T
    Bull Math Biol; 2018 Aug; 80(8):2137-2153. PubMed ID: 29869043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene tree rooting methods give distributions that mimic the coalescent process.
    Tian Y; Kubatko LS
    Mol Phylogenet Evol; 2014 Jan; 70():63-9. PubMed ID: 24055603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes.
    Ruane S; Raxworthy CJ; Lemmon AR; Lemmon EM; Burbrink FT
    BMC Evol Biol; 2015 Oct; 15():221. PubMed ID: 26459325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous networks under the multispecies coalescent: theory and prevalence.
    Ané C; Fogg J; Allman ES; Baños H; Rhodes JA
    J Math Biol; 2024 Feb; 88(3):29. PubMed ID: 38372830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encoding phylogenetic trees in terms of weighted quartets.
    Grünewald S; Huber KT; Moulton V; Semple C
    J Math Biol; 2008 Apr; 56(4):465-77. PubMed ID: 17891538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana).
    Chan KO; Hutter CR; Wood PL; Grismer LL; Brown RM
    Mol Phylogenet Evol; 2020 Oct; 151():106899. PubMed ID: 32590046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of characters evolving at diverse rates of evolution to resolve quartet trees with unequal branch lengths: analytical predictions of long-branch effects.
    Su Z; Townsend JP
    BMC Evol Biol; 2015 May; 15():86. PubMed ID: 25968460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.