These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 34276791)
1. A Time-Resolved Diffusion Technique for Detection of the Conformational Changes and Molecular Assembly/Disassembly Processes of Biomolecules. Nakasone Y; Terazima M Front Genet; 2021; 12():691010. PubMed ID: 34276791 [TBL] [Abstract][Full Text] [Related]
2. Spectrally Silent Protein Reaction Dynamics Revealed by Time-Resolved Thermodynamics and Diffusion Techniques. Terazima M Acc Chem Res; 2021 May; 54(9):2238-2248. PubMed ID: 33886281 [TBL] [Abstract][Full Text] [Related]
3. Time-resolved detection of association/dissociation reactions and conformation changes in photosensor proteins for application in optogenetics. Terazima M Biophys Rev; 2021 Dec; 13(6):1053-1059. PubMed ID: 35059027 [TBL] [Abstract][Full Text] [Related]
4. Studies of photo-induced protein reactions by spectrally silent reaction dynamics detection methods: applications to the photoreaction of the LOV2 domain of phototropin from Arabidopsis thaliana. Terazima M Biochim Biophys Acta; 2011 Aug; 1814(8):1093-105. PubMed ID: 21211575 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved detection of SDS-induced conformational changes in α-synuclein by a micro-stopped-flow system. Takaramoto S; Nakasone Y; Sadakane K; Maruta S; Terazima M RSC Adv; 2020 Dec; 11(2):1086-1097. PubMed ID: 35423687 [TBL] [Abstract][Full Text] [Related]
6. Conformational and Intermolecular Interaction Dynamics of Photolyase/Cryptochrome Proteins Monitored by the Time-Resolved Diffusion Technique. Kondoh M; Terazima M Photochem Photobiol; 2017 Jan; 93(1):15-25. PubMed ID: 27925276 [TBL] [Abstract][Full Text] [Related]
8. Fixation can change the appearance of phase separation in living cells. Irgen-Gioro S; Yoshida S; Walling V; Chong S Elife; 2022 Nov; 11():. PubMed ID: 36444977 [TBL] [Abstract][Full Text] [Related]
9. Evolution of α-synuclein conformation ensemble toward amyloid fibril via liquid-liquid phase separation (LLPS) as investigated by dynamic nuclear polarization-enhanced solid-state MAS NMR. Takamuku M; Sugishita T; Tamaki H; Dong L; So M; Fujiwara T; Matsuki Y Neurochem Int; 2022 Jul; 157():105345. PubMed ID: 35500664 [TBL] [Abstract][Full Text] [Related]
10. Spectrally Resolved FRET Microscopy of α-Synuclein Phase-Separated Liquid Droplets. Mahato J; Ray S; Maji SK; Chowdhury A Methods Mol Biol; 2023; 2551():425-447. PubMed ID: 36310218 [TBL] [Abstract][Full Text] [Related]
11. FRAP and FRET Investigation of α-Synuclein Fibrillization via Liquid-Liquid Phase Separation In Vitro and in HeLa Cells. Ray S; Singh N; Patel K; Krishnamoorthy G; Maji SK Methods Mol Biol; 2023; 2551():395-423. PubMed ID: 36310217 [TBL] [Abstract][Full Text] [Related]
12. Different Intermolecular Interactions Drive Nonpathogenic Liquid-Liquid Phase Separation and Potentially Pathogenic Fibril Formation by TDP-43. Zeng YT; Bi LL; Zhuo XF; Yang LY; Sun B; Lu JX Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499553 [TBL] [Abstract][Full Text] [Related]
13. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089 [TBL] [Abstract][Full Text] [Related]
14. Direct Observation of "Elongated" Conformational States in α-Synuclein upon Liquid-Liquid Phase Separation. Ubbiali D; Fratini M; Piersimoni L; Ihling CH; Kipping M; Heilmann I; Iacobucci C; Sinz A Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202205726. PubMed ID: 36115020 [TBL] [Abstract][Full Text] [Related]
15. Cyclic dipeptide-based small molecules modulate zinc-mediated liquid-liquid phase separation of tau. Ramesh M; Balachandra C; Baruah P; Govindaraju T J Pept Sci; 2023 May; 29(5):e3465. PubMed ID: 36471564 [TBL] [Abstract][Full Text] [Related]
16. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation. Wu S; Wen J; Perrett S Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527 [TBL] [Abstract][Full Text] [Related]
17. Exploring Structures and Dynamics of Molecular Assemblies: Ultrafast Time-Resolved Electron Diffraction Measurements. Hada M; Nishina Y; Kato T Acc Chem Res; 2021 Feb; 54(3):731-743. PubMed ID: 33319986 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Control of Functional Coacervates in Synthetic Cells. Nair KS; Radhakrishnan S; Bajaj H ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618 [TBL] [Abstract][Full Text] [Related]
19. Modulating liquid-liquid phase separation of FUS: mechanisms and strategies. Ji Y; Li F; Qiao Y J Mater Chem B; 2022 Nov; 10(42):8616-8628. PubMed ID: 36268634 [TBL] [Abstract][Full Text] [Related]
20. Modulating α-Synuclein Liquid-Liquid Phase Separation. Sawner AS; Ray S; Yadav P; Mukherjee S; Panigrahi R; Poudyal M; Patel K; Ghosh D; Kummerant E; Kumar A; Riek R; Maji SK Biochemistry; 2021 Dec; 60(48):3676-3696. PubMed ID: 34431665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]