BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34276934)

  • 1. Flow electrochemistry: a safe tool for fluorine chemistry.
    Winterson B; Rennigholtz T; Wirth T
    Chem Sci; 2021 Jul; 12(26):9053-9059. PubMed ID: 34276934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Difluorinative ring expansions of benzo-fused carbocycles and heterocycles are achieved with p-(difluoroiodo)toluene.
    Zhao Z; To AJ; Murphy GK
    Chem Commun (Camb); 2019 Dec; 55(98):14821-14824. PubMed ID: 31763650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications.
    Elsherbini M; Winterson B; Alharbi H; Folgueiras-Amador AA; Génot C; Wirth T
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9811-9815. PubMed ID: 31050149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Electrochemical Systems for Selective Fluorination of Organic Compounds.
    Fuchigami T; Inagi S
    Acc Chem Res; 2020 Feb; 53(2):322-334. PubMed ID: 32017527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer.
    Dohi T; Morimoto K; Takenaga N; Goto A; Maruyama A; Kiyono Y; Tohma H; Kita Y
    J Org Chem; 2007 Jan; 72(1):109-16. PubMed ID: 17194088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroorganic Synthesis under Flow Conditions.
    Elsherbini M; Wirth T
    Acc Chem Res; 2019 Dec; 52(12):3287-3296. PubMed ID: 31693339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodine(III) Reagents in Radical Chemistry.
    Wang X; Studer A
    Acc Chem Res; 2017 Jul; 50(7):1712-1724. PubMed ID: 28636313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolytic partial fluorination of organic compounds. 83. Anodic fluorination of N-substituted pyrroles and its synthetic applications to gem-difluorinated heterocyclic compounds.
    Tajima T; Nakajima A; Fuchigami T
    J Org Chem; 2006 Feb; 71(4):1436-41. PubMed ID: 16468791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypervalent Iodine Reagents by Anodic Oxidation: A Powerful Green Synthesis.
    Elsherbini M; Wirth T
    Chemistry; 2018 Sep; 24(51):13399-13407. PubMed ID: 29655209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydrogenative Electrochemical Synthesis of N-Aryl-3,4-Dihydroquinolin-2-ones by Iodine(III)-Mediated Coupling Reaction.
    Bieniek JC; Mashtakov B; Schollmeyer D; Waldvogel SR
    Chemistry; 2024 Feb; 30(7):e202303388. PubMed ID: 38018461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of fluorinated polycyclic dehydroaltenusin analogs through hypervalent iodine-catalyzed dearomatization.
    Cao J; Deng Q; Hu L; Zhang X; Xiong Y
    Org Biomol Chem; 2022 Oct; 20(41):8104-8107. PubMed ID: 36205569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions.
    Shetgaonkar SE; Singh FV
    Front Chem; 2020; 8():705. PubMed ID: 33134246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Generation of Hypervalent Bromine(III) Compounds.
    Sokolovs I; Mohebbati N; Francke R; Suna E
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15832-15837. PubMed ID: 33894098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of S
    See YY; Morales-Colón MT; Bland DC; Sanford MS
    Acc Chem Res; 2020 Oct; 53(10):2372-2383. PubMed ID: 32969213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu-Catalyzed Oxidative 3-Amination of Indoles via Formation of Indolyl(aryl)iodonium Imides Using
    Watanabe K; Moriyama K
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30909483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of intramolecular oxidative phenolic coupling reactions using hypervalent iodine (III) reagents and their application to the synthesis of Amaryllidaceae alkaloids].
    Arisawa M; Tohma H; Kita Y
    Yakugaku Zasshi; 2000 Oct; 120(10):1061-73. PubMed ID: 11082716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic C-N Coupling via Anodically Generated Hypervalent Iodine Intermediates.
    Maity A; Frey BL; Hoskinson ND; Powers DC
    J Am Chem Soc; 2020 Mar; 142(11):4990-4995. PubMed ID: 32129617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis.
    Jiao KJ; Xing YK; Yang QL; Qiu H; Mei TS
    Acc Chem Res; 2020 Feb; 53(2):300-310. PubMed ID: 31939278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable to Electron-Rich Substrates.
    Doobary S; Sedikides AT; Caldora HP; Poole DL; Lennox AJJ
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1155-1160. PubMed ID: 31697872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Updates on Electrogenerated Hypervalent Iodine Derivatives and Their Applications as Mediators in Organic Electrosynthesis.
    Chen C; Wang X; Yang T
    Front Chem; 2022; 10():883474. PubMed ID: 35494647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.