BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34276934)

  • 21. Kitamura Electrophilic Fluorination Using HF as a Source of Fluorine.
    Han J; Butler G; Moriwaki H; Konno H; Soloshonok VA; Kitamura T
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32366048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents.
    Shetgaonkar SE; Mamgain R; Kikushima K; Dohi T; Singh FV
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypervalent-Iodine(III)-Mediated Oxidative Methodology for the Synthesis of Fused Triazoles.
    Kamal R; Kumar V; Kumar R
    Chem Asian J; 2016 Jul; 11(14):1988-2000. PubMed ID: 27123538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electroytic partial fluorination of organic compounds. 52. Regio- and diastereoselective anodic fluorination of thiazolidines.
    Baba D; Ishii H; Higashiya S; Fujisawa K; Fuchigami T
    J Org Chem; 2001 Oct; 66(21):7020-4. PubMed ID: 11597223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical Oxidative Syntheses of NH-Sulfoximines, NH-Sulfonimidamides and Dibenzothiazines via Anodically Generated Hypervalent Iodine Intermediates.
    Kong X; Lin L; Chen X; Chen Y; Wang W; Xu B
    ChemSusChem; 2021 Aug; 14(16):3277-3282. PubMed ID: 34292660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents.
    Shetgaonkar SE; Raju A; China H; Takenaga N; Dohi T; Singh FV
    Front Chem; 2022; 10():909250. PubMed ID: 35844643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iodine(III)-Mediated Fluorination/Semipinacol Rearrangement Cascade of 2-Alkylidenecyclobutanol Derivatives: Access to β-Monofluorinated Cyclopropanecarbaldehydes.
    Feng SX; Yang S; Tu FH; Lin PP; Huang LL; Wang H; Huang ZS; Li Q
    J Org Chem; 2021 May; 86(9):6800-6812. PubMed ID: 33899472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions.
    Yuan Y; Lei A
    Acc Chem Res; 2019 Dec; 52(12):3309-3324. PubMed ID: 31774271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical Fluorination and Radiofluorination of Methyl(phenylthio)acetate Using Tetrabutylammonium Fluoride (TBAF).
    Balandeh M; Waldmann C; Shirazi D; Gomez A; Rios A; Allison N; Khan A; Sadeghi S
    J Electrochem Soc; 2017; 164(9):G99-G103. PubMed ID: 28890550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C-H Bond Transformations Using Synthetic Macrocycles.
    Zhang Q; Tong S; Wang MX
    Acc Chem Res; 2022 Oct; 55(19):2796-2810. PubMed ID: 35994690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery.
    Siu JC; Fu N; Lin S
    Acc Chem Res; 2020 Mar; 53(3):547-560. PubMed ID: 32077681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation.
    Spils J; Wirth T; Nachtsheim BJ
    Beilstein J Org Chem; 2023; 19():27-32. PubMed ID: 36686040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. C-H Oxygenation Reactions Enabled by Dual Catalysis with Electrogenerated Hypervalent Iodine Species and Ruthenium Complexes.
    Massignan L; Tan X; Meyer TH; Kuniyil R; Messinis AM; Ackermann L
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3184-3189. PubMed ID: 31777143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical Fluorocyclization of N-Allylcarboxamides to 2-Oxazolines by Hypervalent Iodine Mediator.
    Haupt JD; Berger M; Waldvogel SR
    Org Lett; 2019 Jan; 21(1):242-245. PubMed ID: 30557030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shelf-stable electrophilic reagents for trifluoromethylthiolation.
    Shao X; Xu C; Lu L; Shen Q
    Acc Chem Res; 2015 May; 48(5):1227-36. PubMed ID: 25947041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Para-Fluorination of Anilides Using Electrochemically Generated Hypervalent Iodoarenes.
    Berger M; Lenhard MS; Waldvogel SR
    Chemistry; 2022 Jul; 28(41):e202201029. PubMed ID: 35510825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paired Electrochemical Reactions and the On-Site Generation of a Chemical Reagent.
    Wu T; Nguyen BH; Daugherty MC; Moeller KD
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3562-3565. PubMed ID: 30706627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypervalent iodine mediated para-selective fluorination of anilides.
    Tian T; Zhong WH; Meng S; Meng XB; Li ZJ
    J Org Chem; 2013 Jan; 78(2):728-32. PubMed ID: 23228030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypervalent Iodine(III)-Mediated Oxidative Fluorination of Alkylsilanes by Fluoride Ions.
    Xu P; Wang F; Fan G; Xu X; Tang P
    Angew Chem Int Ed Engl; 2017 Jan; 56(4):1101-1104. PubMed ID: 27966813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.