These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34277570)

  • 1. Selective Production of Phenol-Rich Bio-Oil From Corn Straw Waste by Direct Microwave Pyrolysis Without Extra Catalyst.
    Zhao Z; Jiang Z; Xu H; Yan K
    Front Chem; 2021; 9():700887. PubMed ID: 34277570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A; Tahmasebi A; Tian L; Yu J
    Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.
    Omoriyekomwan JE; Tahmasebi A; Yu J
    Bioresour Technol; 2016 May; 207():188-96. PubMed ID: 26890793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor.
    Wu Q; Wang Y; Jiang L; Yang Q; Ke L; Peng Y; Yang S; Dai L; Liu Y; Ruan R
    Bioresour Technol; 2020 Mar; 299():122611. PubMed ID: 31874451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.
    Mushtaq F; Abdullah TA; Mat R; Ani FN
    Bioresour Technol; 2015 Aug; 190():442-50. PubMed ID: 25794811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.
    Zhang B; Zhong Z; Xie Q; Liu S; Ruan R
    J Environ Sci (China); 2016 Jul; 45():240-7. PubMed ID: 27372139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system.
    Wang Y; Zeng Z; Tian X; Dai L; Jiang L; Zhang S; Wu Q; Wen P; Fu G; Liu Y; Ruan R
    Bioresour Technol; 2018 Dec; 269():162-168. PubMed ID: 30172179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology.
    Neha S; Remya N
    J Environ Manage; 2021 Nov; 297():113345. PubMed ID: 34329909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.
    Choi GG; Oh SJ; Lee SJ; Kim JS
    Bioresour Technol; 2015 Feb; 178():99-107. PubMed ID: 25227587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst.
    Dong Q; Li H; Niu M; Luo C; Zhang J; Qi B; Li X; Zhong W
    Bioresour Technol; 2018 Oct; 266():284-290. PubMed ID: 29982049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.
    Dai L; Fan L; Liu Y; Ruan R; Wang Y; Zhou Y; Zhao Y; Yu Z
    Bioresour Technol; 2017 Feb; 225():1-8. PubMed ID: 27875763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors.
    Yerrayya A; Suriapparao DV; Natarajan U; Vinu R
    Bioresour Technol; 2018 Dec; 270():519-528. PubMed ID: 30248651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.
    Jeong JY; Lee UD; Chang WS; Jeong SH
    Bioresour Technol; 2016 Nov; 219():357-364. PubMed ID: 27501032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.
    Liu S; Xie Q; Zhang B; Cheng Y; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2016 Mar; 204():164-170. PubMed ID: 26773959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide.
    Su Y; Liu L; Zhang S; Xu D; Du H; Cheng Y; Wang Z; Xiong Y
    Bioresour Technol; 2020 Jan; 295():122243. PubMed ID: 31622918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast pyrolysis characteristics and its mechanism of corn stover over iron oxide via quick infrared heating.
    Li M; Hu E; Tian Y; Yang Y; Dai C; Li C
    Waste Manag; 2022 Jul; 149():60-69. PubMed ID: 35724609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.