These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 34277582)
1. Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review With Special Reference to Isoflavonoids. Sajid M; Stone SR; Kaur P Front Bioeng Biotechnol; 2021; 9():673270. PubMed ID: 34277582 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetic Analysis and Protein Modelling of Isoflavonoid Synthase Highlights Key Catalytic Sites towards Realising New Bioengineering Endeavours. Sajid M; Stone SR; Kaur P Bioengineering (Basel); 2022 Oct; 9(11):. PubMed ID: 36354520 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis and metabolic engineering of isoflavonoids in model plants and crops: a review. Wang L; Li C; Luo K Front Plant Sci; 2024; 15():1384091. PubMed ID: 38984160 [TBL] [Abstract][Full Text] [Related]
4. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Liu Q; Liu Y; Li G; Savolainen O; Chen Y; Nielsen J Nat Commun; 2021 Oct; 12(1):6085. PubMed ID: 34667183 [TBL] [Abstract][Full Text] [Related]
5. Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Wang X Funct Integr Genomics; 2011 Mar; 11(1):13-22. PubMed ID: 21052759 [TBL] [Abstract][Full Text] [Related]
7. Genetic and metabolic engineering of isoflavonoid biosynthesis. Du H; Huang Y; Tang Y Appl Microbiol Biotechnol; 2010 May; 86(5):1293-312. PubMed ID: 20309543 [TBL] [Abstract][Full Text] [Related]
8. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Liu J; Wang X; Dai G; Zhang Y; Bian X Biotechnol Adv; 2022 Oct; 59():107966. PubMed ID: 35487394 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Navale GR; Dharne MS; Shinde SS Appl Microbiol Biotechnol; 2021 Jan; 105(2):457-475. PubMed ID: 33394155 [TBL] [Abstract][Full Text] [Related]
10. Perspectives on the design of microbial cell factories to produce prenylflavonoids. Gomes D; Rodrigues LR; Rodrigues JL Int J Food Microbiol; 2022 Apr; 367():109588. PubMed ID: 35245724 [TBL] [Abstract][Full Text] [Related]
11. [Microbial synthesis of plant polyphenols]. Li L; Liu X; Qiu Z; Zhao G Sheng Wu Gong Cheng Xue Bao; 2021 Jun; 37(6):2050-2076. PubMed ID: 34227294 [TBL] [Abstract][Full Text] [Related]
12. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume García-Calderón M; Pérez-Delgado CM; Palove-Balang P; Betti M; Márquez AJ Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32575698 [TBL] [Abstract][Full Text] [Related]
13. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Ralston L; Subramanian S; Matsuno M; Yu O Plant Physiol; 2005 Apr; 137(4):1375-88. PubMed ID: 15778463 [TBL] [Abstract][Full Text] [Related]
14. Isoflavonoid metabolism in leguminous plants: an update and perspectives. Yang Q; Wang G Front Plant Sci; 2024; 15():1368870. PubMed ID: 38405585 [TBL] [Abstract][Full Text] [Related]
15. Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain. Wang J; Li L; Wang Z; Feng A; Li H; Qaseem MF; Liu L; Deng X; Wu AM Int J Biol Macromol; 2023 Aug; 246():125601. PubMed ID: 37392916 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Patra P; Das M; Kundu P; Ghosh A Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474 [TBL] [Abstract][Full Text] [Related]
17. Proteomic insights into synthesis of isoflavonoids in soybean seeds. Dastmalchi M; Dhaubhadel S Proteomics; 2015 May; 15(10):1646-57. PubMed ID: 25757747 [TBL] [Abstract][Full Text] [Related]
18. Twin anchors of the soybean isoflavonoid metabolon: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. Dastmalchi M; Bernards MA; Dhaubhadel S Plant J; 2016 Mar; 85(6):689-706. PubMed ID: 26856401 [TBL] [Abstract][Full Text] [Related]
19. Soybean AROGENATE DEHYDRATASES (GmADTs): involvement in the cytosolic isoflavonoid metabolon or trans-organelle continuity? Clayton EJ; Islam NS; Pannunzio K; Kuflu K; Sirjani R; Kohalmi SE; Dhaubhadel S Front Plant Sci; 2024; 15():1307489. PubMed ID: 38322824 [TBL] [Abstract][Full Text] [Related]
20. Modular Engineering of Meng Y; Liu X; Zhang L; Zhao GR Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]