These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 34277582)
21. Glyceollins from soybean: Their pharmacological effects and biosynthetic pathways. Yue Z; He S; Wang J; Jiang Q; Wang H; Wu J; Li C; Wang Z; He X; Jia N Heliyon; 2023 Nov; 9(11):e21874. PubMed ID: 38034638 [TBL] [Abstract][Full Text] [Related]
23. Production of Genistein in Malla A; Shanmugaraj B; Sharma A; Ramalingam S Plants (Basel); 2021 Oct; 10(11):. PubMed ID: 34834674 [TBL] [Abstract][Full Text] [Related]
24. Engineered Biosynthesis of Medicinally Important Plant Natural Products in Microorganisms. Zhang S; Wang S; Zhan J Curr Top Med Chem; 2016; 16(15):1740-54. PubMed ID: 26456465 [TBL] [Abstract][Full Text] [Related]
25. Transcriptomic evidence for the control of soybean root isoflavonoid content by regulation of overlapping phenylpropanoid pathways. Dastmalchi M; Chapman P; Yu J; Austin RS; Dhaubhadel S BMC Genomics; 2017 Jan; 18(1):70. PubMed ID: 28077078 [TBL] [Abstract][Full Text] [Related]
26. RolB gene-induced production of isoflavonoids in transformed Maackia amurensis cells. Grishchenko OV; Kiselev KV; Tchernoded GK; Fedoreyev SA; Veselova MV; Bulgakov VP; Zhuravlev YN Appl Microbiol Biotechnol; 2016 Sep; 100(17):7479-89. PubMed ID: 27063013 [TBL] [Abstract][Full Text] [Related]
27. Genistein-Specific G6DT Gene for the Inducible Production of Wighteone in Lotus japonicus. Liu J; Jiang W; Xia Y; Wang X; Shen G; Pang Y Plant Cell Physiol; 2018 Jan; 59(1):128-141. PubMed ID: 29140457 [TBL] [Abstract][Full Text] [Related]
28. Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Dixon RA; Steele CL Trends Plant Sci; 1999 Oct; 4(10):394-400. PubMed ID: 10498963 [TBL] [Abstract][Full Text] [Related]
29. Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Dhaubhadel S; McGarvey BD; Williams R; Gijzen M Plant Mol Biol; 2003 Dec; 53(6):733-43. PubMed ID: 15082922 [TBL] [Abstract][Full Text] [Related]
30. Supplementation with isoflavonoid phytoestrogens does not alter serum lipid concentrations: a randomized controlled trial in humans. Hodgson JM; Puddey IB; Beilin LJ; Mori TA; Croft KD J Nutr; 1998 Apr; 128(4):728-32. PubMed ID: 9521635 [TBL] [Abstract][Full Text] [Related]
31. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. Shelton D; Stranne M; Mikkelsen L; Pakseresht N; Welham T; Hiraka H; Tabata S; Sato S; Paquette S; Wang TL; Martin C; Bailey P Plant Physiol; 2012 Jun; 159(2):531-47. PubMed ID: 22529285 [TBL] [Abstract][Full Text] [Related]
32. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. Li W; Cui L; Mai J; Shi TQ; Lin L; Zhang ZG; Ledesma-Amaro R; Dong W; Ji XJ J Agric Food Chem; 2022 Aug; 70(30):9246-9261. PubMed ID: 35854404 [TBL] [Abstract][Full Text] [Related]
33. [Research progresses in the biosynthesis of curcuminoids]. Wang L; Han X; Wang F; Sun L; Xin F Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):404-417. PubMed ID: 33645144 [TBL] [Abstract][Full Text] [Related]
34. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. Moses T; Pollier J; Thevelein JM; Goossens A New Phytol; 2013 Oct; 200(1):27-43. PubMed ID: 23668256 [TBL] [Abstract][Full Text] [Related]
35. GmMYB176 Regulates Multiple Steps in Isoflavonoid Biosynthesis in Soybean. Anguraj Vadivel AK; Renaud J; Kagale S; Dhaubhadel S Front Plant Sci; 2019; 10():562. PubMed ID: 31130975 [TBL] [Abstract][Full Text] [Related]
36. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233 [TBL] [Abstract][Full Text] [Related]
37. Transcriptome analysis of Pueraria candollei var. mirifica for gene discovery in the biosyntheses of isoflavones and miroestrol. Suntichaikamolkul N; Tantisuwanichkul K; Prombutara P; Kobtrakul K; Zumsteg J; Wannachart S; Schaller H; Yamazaki M; Saito K; De-Eknamkul W; Vimolmangkang S; Sirikantaramas S BMC Plant Biol; 2019 Dec; 19(1):581. PubMed ID: 31878891 [TBL] [Abstract][Full Text] [Related]
38. Effects of Isoflavonoid and Vitamin D Synergism on Bone Mineral Density-A Systematic and Critical Review. Miedziaszczyk M; Maciejewski A; Idasiak-Piechocka I; Karczewski M; Lacka K Nutrients; 2023 Dec; 15(24):. PubMed ID: 38140273 [TBL] [Abstract][Full Text] [Related]
39. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. He Y; Wang B; Chen W; Cox RJ; He J; Chen F Biotechnol Adv; 2018; 36(3):739-783. PubMed ID: 29421302 [TBL] [Abstract][Full Text] [Related]
40. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems. Kemper K; Hirte M; Reinbold M; Fuchs M; Brück T Beilstein J Org Chem; 2017; 13():845-854. PubMed ID: 28546842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]