BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 34277702)

  • 1. Oxygen-Based Nanocarriers to Modulate Tumor Hypoxia for Ameliorated Anti-Tumor Therapy: Fabrications, Properties, and Future Directions.
    Li X; Wu Y; Zhang R; Bai W; Ye T; Wang S
    Front Mol Biosci; 2021; 8():683519. PubMed ID: 34277702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?
    Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y
    Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomedicine-Enabled Modulation of Tumor Hypoxic Microenvironment for Enhanced Cancer Therapy.
    Wang J; Zhang B; Sun J; Wang Y; Wang H
    Adv Ther (Weinh); 2020 Jan; 3(1):. PubMed ID: 34277929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer.
    Peng N; Yu H; Yu W; Yang M; Chen H; Zou T; Deng K; Huang S; Liu Y
    Acta Biomater; 2020 Mar; 105():223-238. PubMed ID: 31926335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating tumor hypoxia by nanomedicine for effective cancer therapy.
    Jahanban-Esfahlan R; de la Guardia M; Ahmadi D; Yousefi B
    J Cell Physiol; 2018 Mar; 233(3):2019-2031. PubMed ID: 28198007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences.
    Zhang A; Meng K; Liu Y; Pan Y; Qu W; Chen D; Xie S
    Adv Colloid Interface Sci; 2020 Oct; 284():102261. PubMed ID: 32942181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications.
    Lee KW; Wan Y; Li X; Cui X; Li S; Lee CS
    Adv Healthc Mater; 2021 May; 10(10):e2100055. PubMed ID: 33738983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy.
    Cheng X; He L; Xu J; Fang Q; Yang L; Xue Y; Wang X; Tang R
    Acta Biomater; 2020 Aug; 112():234-249. PubMed ID: 32502633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators.
    Yang Y; Zhang M; Song H; Yu C
    Acc Chem Res; 2020 Aug; 53(8):1545-1556. PubMed ID: 32667182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
    Kwon S; Ko H; You DG; Kataoka K; Park JH
    Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives.
    Thambi T; Park JH; Lee DS
    Chem Commun (Camb); 2016 Jun; 52(55):8492-500. PubMed ID: 27225824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy.
    Liu H; Jiang W; Wang Q; Hang L; Wang Y; Wang Y
    Biomater Sci; 2019 Aug; 7(9):3706-3716. PubMed ID: 31187794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering white blood cell membrane-camouflaged nanocarriers for inflammation-related therapeutics.
    Song W; Jia P; Ren Y; Xue J; Zhou B; Xu X; Shan Y; Deng J; Zhou Q
    Bioact Mater; 2023 May; 23():80-100. PubMed ID: 36406250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug nanocrystals for cancer therapy.
    Miao X; Yang W; Feng T; Lin J; Huang P
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 May; 10(3):e1499. PubMed ID: 29044971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of live microorganism-based oxygen shuttles for enhanced hypoxic tumor therapy.
    Han D; Zhang X; Ma Y; Yang X; Li Z
    Mater Today Bio; 2023 Feb; 18():100517. PubMed ID: 36578285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy.
    Xie Z; Guo W; Guo N; Huangfu M; Liu H; Lin M; Xu W; Chen J; Wang T; Wei Q; Han M; Gao J
    Acta Biomater; 2018 Apr; 71():351-362. PubMed ID: 29545193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.
    Matulionyte M; Dapkute D; Budenaite L; Jarockyte G; Rotomskis R
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy.
    Liu J; Shi J; Nie W; Wang S; Liu G; Cai K
    Adv Healthc Mater; 2021 Jan; 10(1):e2001207. PubMed ID: 33000920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance.
    Yang J; Li W; Luo L; Jiang M; Zhu C; Qin B; Yin H; Yuan X; Yin X; Zhang J; Luo Z; Du Y; You J
    Biomaterials; 2018 Nov; 182():145-156. PubMed ID: 30121013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.