These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34277715)

  • 1. Omnidirectional Walking Pattern Generator Combining Virtual Constraints and Preview Control for Humanoid Robots.
    Ruscelli F; Laurenzi A; Mingo Hoffman E; Tsagarakis NG
    Front Robot AI; 2021; 8():660004. PubMed ID: 34277715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imitation of Dynamic Walking With BSN for Humanoid Robot.
    Teachasrisaksakul K; Zhang ZQ; Yang GZ; Lo B
    IEEE J Biomed Health Inform; 2015 May; 19(3):794-802. PubMed ID: 25935051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait Optimization Method for Humanoid Robots Based on Parallel Comprehensive Learning Particle Swarm Optimizer Algorithm.
    Tao C; Xue J; Zhang Z; Cao F; Li C; Gao H
    Front Neurorobot; 2020; 14():600885. PubMed ID: 33519412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Walking Gait Planning and Simulation of a Novel Hybrid Biped Robot.
    Sun P; Gu Y; Mao H; Chen Z; Li Y
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-Inspired Online Path Planning and Biped Walking Realization in Unknown Environment.
    Raković M; Savić S; Santos-Victor J; Nikolić M; Borovac B
    Front Neurorobot; 2019; 13():36. PubMed ID: 31214011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NSPG: An Efficient Posture Generator Based on Null-Space Alteration and Kinetostatics Constraints.
    Rossini L; Hoffman EM; Laurenzi A; Tsagarakis NG
    Front Robot AI; 2021; 8():715325. PubMed ID: 34447789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kid-size robot humanoid walking with heel-contact and toe-off motion.
    Wu Y; Pan Y; Leng X; He Z
    PeerJ Comput Sci; 2022; 7():e797. PubMed ID: 35493066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic locomotion synchronization of bipedal robot and human operator via bilateral feedback teleoperation.
    Ramos J; Kim S
    Sci Robot; 2019 Oct; 4(35):. PubMed ID: 33137732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matsuoka's CPG With Desired Rhythmic Signals for Adaptive Walking of Humanoid Robots.
    Wang Y; Xue X; Chen B
    IEEE Trans Cybern; 2020 Feb; 50(2):613-626. PubMed ID: 30307884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots.
    Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foot placement modification for a biped humanoid robot with narrow feet.
    Hashimoto K; Hattori K; Otani T; Lim HO; Takanishi A
    ScientificWorldJournal; 2014; 2014():259570. PubMed ID: 24592154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot.
    Popescu M; Mronga D; Bergonzani I; Kumar S; Kirchner F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking the HRP-2 Humanoid Robot During Locomotion.
    Stasse O; Giraud-Esclasse K; Brousse E; Naveau M; Régnier R; Avrin G; Souères P
    Front Robot AI; 2018; 5():122. PubMed ID: 33501001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.