These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34278128)

  • 21. Spin-polarized density functional theory study of reactivity of diatomic molecule on bimetallic system: the case of O2 dissociative adsorption on Pt monolayer on Fe(001).
    Escano MC; Nakanishi H; Kasai H
    J Phys Chem A; 2009 Dec; 113(52):14302-7. PubMed ID: 19588900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First principles study of oxygen adsorption on Se-modified Ru nanoparticles.
    Zuluaga S; Stolbov S
    J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemisorption of (CHx and C2Hy) hydrocarbons on Pt(111) clusters and surfaces from DFT studies.
    Jacob T; Goddard WA
    J Phys Chem B; 2005 Jan; 109(1):297-311. PubMed ID: 16851016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Group and Period-Based Representations for Improved Machine Learning Prediction of Heterogeneous Alloy Catalysts.
    Li X; Chiong R; Page AJ
    J Phys Chem Lett; 2021 Jun; 12(21):5156-5162. PubMed ID: 34032450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Element-Based Generalized Coordination Number for Predicting the Oxygen Binding Energy on Pt
    Nanba Y; Koyama M
    ACS Omega; 2021 Feb; 6(4):3218-3226. PubMed ID: 33553938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitigation of CO poisoning on functionalized Pt-TiN surfaces.
    Zhang RQ; Kim CE; Yu BD; Stampfl C; Soon A
    Phys Chem Chem Phys; 2013 Nov; 15(44):19450-6. PubMed ID: 24126922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First-Principles Calculation of Pt Surface Energies in an Electrochemical Environment: Thermodynamic Driving Forces for Surface Faceting and Nanoparticle Reconstruction.
    McCrum IT; Hickner MA; Janik MJ
    Langmuir; 2017 Jul; 33(28):7043-7052. PubMed ID: 28640641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of lactic acid on chiral Pt surfaces--a density functional theory study.
    Franke JH; Kosov DS
    J Chem Phys; 2013 Feb; 138(8):084705. PubMed ID: 23464170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The stability and electronic properties of Pt-modified Cu(1 1 0) and Cu(1 1 1) in the absence/presence of small molecules: a density-functional theory modeling.
    Cui XH; Duan XM
    J Phys Condens Matter; 2016 Mar; 28(8):085001. PubMed ID: 26828639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting metal-metal interactions. II. Accelerating generalized schemes through physical insights.
    Choksi TS; Streibel V; Abild-Pedersen F
    J Chem Phys; 2020 Mar; 152(9):094702. PubMed ID: 33480718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation.
    Fantauzzi D; Bandlow J; Sabo L; Mueller JE; van Duin AC; Jacob T
    Phys Chem Chem Phys; 2014 Nov; 16(42):23118-33. PubMed ID: 25250822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology.
    Zhang RQ; Lee TH; Yu BD; Stampfl C; Soon A
    Phys Chem Chem Phys; 2012 Dec; 14(48):16552-7. PubMed ID: 22772941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorbate modification of electronic nonadiabaticity: H atom scattering from p(2 × 2) O on Pt(111).
    Lecroart L; Hertl N; Dorenkamp Y; Jiang H; Kitsopoulos TN; Kandratsenka A; Bünermann O; Wodtke AM
    J Chem Phys; 2021 Jul; 155(3):034702. PubMed ID: 34293879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrational recognition of adsorption sites for CO on platinum and platinum-ruthenium surfaces.
    Dabo I; Wieckowski A; Marzari N
    J Am Chem Soc; 2007 Sep; 129(36):11045-52. PubMed ID: 17705376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field.
    Ludwig J; Vlachos DG; van Duin AC; Goddard WA
    J Phys Chem B; 2006 Mar; 110(9):4274-82. PubMed ID: 16509724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin of enhanced stability and oxygen adsorption capacity of medium-sized Pt-Ni nanoclusters.
    Yang Y; Yu H; Cai Y; Ferrando R; Cheng D
    J Phys Condens Matter; 2018 Jul; 30(28):285503. PubMed ID: 29863492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Co doping on catalytic activity of small Pt clusters.
    Dhilip Kumar TJ; Zhou C; Cheng H; Forrey RC; Balakrishnan N
    J Chem Phys; 2008 Mar; 128(12):124704. PubMed ID: 18376957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic and molecular adsorption on single platinum atom at the graphene edge: A density functional theory study.
    Wella SA; Hamamoto Y; Iskandar F; Suprijadi ; Morikawa Y; Hamada I
    J Chem Phys; 2020 Mar; 152(10):104707. PubMed ID: 32171202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure dependence of NO adsorption and dissociation on platinum surfaces.
    Ge Q; Neurock M
    J Am Chem Soc; 2004 Feb; 126(5):1551-9. PubMed ID: 14759214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.