These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34278128)

  • 41. Enhanced Oxygen Reduction Activity of Platinum Monolayer on Gold Nanoparticles.
    Shao M; Peles A; Shoemaker K; Gummalla M; Njoki PN; Luo J; Zhong CJ
    J Phys Chem Lett; 2011 Jan; 2(2):67-72. PubMed ID: 26295523
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring Structure-Sensitive Relations for Small Species Adsorption Using Machine Learning.
    Zong X; Vlachos DG
    J Chem Inf Model; 2022 Sep; 62(18):4361-4368. PubMed ID: 36094012
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monte Carlo simulation of surface segregation phenomena in extended and nanoparticle surfaces of Pt-Pd alloys.
    Duan Z; Wang G
    J Phys Condens Matter; 2011 Nov; 23(47):475301. PubMed ID: 22075765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chiral selectivity of amino acid adsorption on chiral surfaces--the case of alanine on Pt.
    Franke JH; Kosov DS
    J Chem Phys; 2015 Feb; 142(5):054708. PubMed ID: 25662661
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and chemical reactivity of the polar three-fold surfaces of GaPd: a density-functional study.
    Krajčí M; Hafner J
    J Chem Phys; 2013 Mar; 138(12):124703. PubMed ID: 23556738
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Density functional theory model study of size and structure effects on water dissociation by platinum nanoparticles.
    Fajín JL; Bruix A; Cordeiro MN; Gomes JR; Illas F
    J Chem Phys; 2012 Jul; 137(3):034701. PubMed ID: 22830718
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissociative adsorption of O
    Xue T; Wu C; Ding X; Sun J
    Phys Chem Chem Phys; 2018 Jul; 20(26):17927-17933. PubMed ID: 29926060
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adsorption mechanism of Pt, Ag, Al, Au on GaAs nanowire surfaces from first-principles.
    Diao Y; Liu L; Xia S
    J Phys Condens Matter; 2020 Feb; 32(8):085001. PubMed ID: 31703219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NO2 interaction with Au atom adsorbed on perfect and defective MgO(100) surfaces: density functional theory calculations.
    Ammar HY; Eid KhM
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6660-71. PubMed ID: 24245127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electronic composition-property relationship applied to SO2 chemisorption on Pt111 surfaces, alloys, and overlayers.
    Tang H; Trout BL
    J Phys Chem B; 2005 Apr; 109(15):6948-51. PubMed ID: 16851787
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-temperature activation of methane on doped single atoms: descriptor and prediction.
    Fung V; Tao FF; Jiang DE
    Phys Chem Chem Phys; 2018 Sep; 20(35):22909-22914. PubMed ID: 30152484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Another way of looking at bonding on bimetallic surfaces: the role of spin polarization of surface metal d states.
    Escaño MC; Nguyen TQ; Nakanishi H; Kasai H
    J Phys Condens Matter; 2009 Dec; 21(49):492201. PubMed ID: 21836186
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces.
    Chang TY; Tanaka Y; Ishikawa R; Toyoura K; Matsunaga K; Ikuhara Y; Shibata N
    Nano Lett; 2014 Jan; 14(1):134-8. PubMed ID: 24351061
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding Adsorption-Induced Effects on Platinum Nanoparticles: An Energy-Decomposition Analysis.
    Calle-Vallejo F; Sautet P; Loffreda D
    J Phys Chem Lett; 2014 Sep; 5(18):3120-4. PubMed ID: 26276322
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles.
    Schalow T; Brandt B; Starr DE; Laurin M; Shaikhutdinov SK; Schauermann S; Libuda J; Freund HJ
    Phys Chem Chem Phys; 2007 Mar; 9(11):1347-61. PubMed ID: 17347708
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption energetics of CO on supported Pd nanoparticles as a function of particle size by single crystal microcalorimetry.
    Flores-Camacho JM; Fischer-Wolfarth JH; Peter M; Campbell CT; Schauermann S; Freund HJ
    Phys Chem Chem Phys; 2011 Oct; 13(37):16800-10. PubMed ID: 21858366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of graphene support on large Pt nanoparticles.
    Verga LG; Aarons J; Sarwar M; Thompsett D; Russell AE; Skylaris CK
    Phys Chem Chem Phys; 2016 Dec; 18(48):32713-32722. PubMed ID: 27878153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321)(S) studied by density functional theory.
    Franke JH; Kosov DS
    J Chem Phys; 2015 Jan; 142(4):044703. PubMed ID: 25637999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Machine learned features from density of states for accurate adsorption energy prediction.
    Fung V; Hu G; Ganesh P; Sumpter BG
    Nat Commun; 2021 Jan; 12(1):88. PubMed ID: 33398014
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Density functional theory study on the adsorption and decomposition of the formic acid catalyzed by highly active mushroom-like Au@Pd@Pt tri-metallic nanoparticles.
    Duan S; Ji YF; Fang PP; Chen YX; Xu X; Luo Y; Tian ZQ
    Phys Chem Chem Phys; 2013 Apr; 15(13):4625-33. PubMed ID: 23423429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.