These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34278275)

  • 1. 3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption.
    Surjadi JU; Zhou Y; Wang T; Yang Y; Kai JJ; Lu Y; Wang Z
    iScience; 2021 Jul; 24(7):102789. PubMed ID: 34278275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing.
    Kumar S; Ubaid J; Abishera R; Schiffer A; Deshpande VS
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42549-42560. PubMed ID: 31566942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tough Adhesion of Freezing- and Drying-Tolerant Transparent Nanocomposite Organohydrogels.
    Liu B; Li F; Niu P; Li H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21822-21830. PubMed ID: 33913687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring mechanical properties in 3D printed multimaterial architected structures.
    Mehrpouya M; Ghalayaniesfahani A; Postmes JF; Gibson I
    J Mech Behav Biomed Mater; 2024 Apr; 152():106431. PubMed ID: 38290391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Organohydrogels With Extreme Strength and Temperature Tolerance.
    Zhang JW; Dong DD; Guan XY; Zhang EM; Chen YM; Yang K; Zhang YX; Khan MMB; Arfat Y; Aziz Y
    Front Chem; 2020; 8():102. PubMed ID: 32211372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoupling particle-impact dissipation mechanisms in 3D architected materials.
    Butruille T; Crone JC; Portela CM
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2313962121. PubMed ID: 38306480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption.
    Li X; Yu X; Chua JW; Lee HP; Ding J; Zhai W
    Small; 2021 Jun; 17(24):e2100336. PubMed ID: 33984173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic multistable architected materials with temperature-dependent snapping sequence.
    Che K; Yuan C; Qi HJ; Meaud J
    Soft Matter; 2018 Mar; 14(13):2492-2499. PubMed ID: 29513315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials.
    Lin Z; Novelino LS; Wei H; Alderete NA; Paulino GH; Espinosa HD; Krishnaswamy S
    Small; 2020 Sep; 16(35):e2002229. PubMed ID: 32715617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Fabrication of Anti-Freezing, Non-Drying Tough Organohydrogels by One-Pot Solvent Displacement.
    Chen F; Zhou D; Wang J; Li T; Zhou X; Gan T; Handschuh-Wang S; Zhou X
    Angew Chem Int Ed Engl; 2018 May; 57(22):6568-6571. PubMed ID: 29656553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials.
    Ma C; Chang Y; Wu S; Zhao RR
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35833606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly-stretchable 3D-architected Mechanical Metamaterials.
    Jiang Y; Wang Q
    Sci Rep; 2016 Sep; 6():34147. PubMed ID: 27667638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Hierarchical Architected Lattices for Enhanced Energy Absorption.
    Al Nashar M; Sutradhar A
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-freezing, Conductive Self-healing Organohydrogels with Stable Strain-Sensitivity at Subzero Temperatures.
    Rong Q; Lei W; Chen L; Yin Y; Zhou J; Liu M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14159-14163. PubMed ID: 28940584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications.
    Ding Q; Wu Z; Tao K; Wei Y; Wang W; Yang BR; Xie X; Wu J
    Mater Horiz; 2022 May; 9(5):1356-1386. PubMed ID: 35156986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning in Mechanical Metamaterials: From Prediction and Generation to Inverse Design.
    Zheng X; Zhang X; Chen TT; Watanabe I
    Adv Mater; 2023 Nov; 35(45):e2302530. PubMed ID: 37332101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material.
    Xiong Z; Li M; Hao S; Liu Y; Cui L; Yang H; Cui C; Jiang D; Yang Y; Lei H; Zhang Y; Ren Y; Zhang X; Li J
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39915-39924. PubMed ID: 34396781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design Criteria for Architected Materials with Programmable Mechanical Properties Within Theoretical Limit Ranges.
    Yin P; Li B; Hong J; Jing H; Li B; Liu H; Chen X; Lu Y; Shao J
    Adv Sci (Weinh); 2024 Mar; 11(9):e2307279. PubMed ID: 38084485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties and Reliability of Parametrically Designed Architected Materials Using Urethane Elastomers.
    Morita J; Ando Y; Komatsu S; Matsumura K; Okazaki T; Asano Y; Nakatani M; Tanaka H
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33803487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion.
    Xu H; Pasini D
    Sci Rep; 2016 Oct; 6():34924. PubMed ID: 27721437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.