BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34278553)

  • 1. Agricultural and non-agricultural directions of bio-based sewage sludge valorization by chemical conditioning.
    Izydorczyk G; Mikula K; Skrzypczak D; Trzaska K; Moustakas K; Witek-Krowiak A; Chojnacka K
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):47725-47740. PubMed ID: 34278553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical conditioning methods for sludge deep dewatering: A critical review.
    Liu Z; Luo F; He L; Wang S; Wu Y; Chen Z
    J Environ Manage; 2024 Jun; 360():121207. PubMed ID: 38788408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of protein extraction methods from excess activated sludge.
    Gao J; Weng W; Yan Y; Wang Y; Wang Q
    Chemosphere; 2020 Jun; 249():126107. PubMed ID: 32062556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of 14 sludge types from wastewater treatment plants using bench and pilot thermal hydrolysis.
    Qiao W; Sun Y; Wang W
    Water Sci Technol; 2012; 66(4):895-902. PubMed ID: 22766883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein extraction and sludge dewatering performance of ultrasound-assisted enzymatic hydrolysis of excess sludge.
    Yan Y; Qin L; Gao J; Nan R; Gao J
    Environ Sci Pollut Res Int; 2020 May; 27(15):18317-18328. PubMed ID: 32185736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-dewatering treatment of sludge: Assessment of the influence on relevant indicators for disposal in agriculture.
    Rumky J; Visigalli S; Turolla A; Gelmi E; Necibi C; Gronchi P; Sillanpää M; Canziani R
    J Environ Manage; 2020 Aug; 268():110689. PubMed ID: 32383657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal alkaline conversion of sewage sludge: optimization of process parameters and characterization of humic acid.
    Qiu C; Xu W; Wang Y; Yang J; Su X; Lin Z
    Environ Sci Pollut Res Int; 2021 Nov; 28(41):57695-57705. PubMed ID: 34091839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced technology based for sewage sludge deep dewatering: A critical review.
    Cao B; Zhang T; Zhang W; Wang D
    Water Res; 2021 Feb; 189():116650. PubMed ID: 33246217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel technology for sewage sludge utilization: preparation of amino acids chelated trace elements (AACTE) fertilizer.
    Liu Y; Kong S; Li Y; Zeng H
    J Hazard Mater; 2009 Nov; 171(1-3):1159-67. PubMed ID: 19616890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dewatering of sewage sludge via thermal hydrolysis with ammonia-treated Fenton iron sludge as skeleton material.
    Xu ZX; Song H; Deng XQ; Zhang YY; Xue-Qin M; Tong SQ; He ZX; Wang Q; Shao YW; Hu X
    J Hazard Mater; 2019 Nov; 379():120810. PubMed ID: 31255849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cumulative and residual effects of repeated sewage sludge applications: forage productivity and soil quality implications in South Florida, USA.
    Sigua GC; Adjei MB; Rechcigl JE
    Environ Sci Pollut Res Int; 2005; 12(2):80-8. PubMed ID: 15859114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants.
    Tang Y; Xie H; Sun J; Li X; Zhang Y; Dai X
    Water Res; 2022 Mar; 211():118036. PubMed ID: 35032873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.
    Hii K; Baroutian S; Parthasarathy R; Gapes DJ; Eshtiaghi N
    Bioresour Technol; 2014 Mar; 155():289-99. PubMed ID: 24457302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of anaerobic sewage sludge quality for agricultural application after metal bioleaching.
    Villar LD; Garcia O
    Environ Technol; 2003 Dec; 24(12):1553-9. PubMed ID: 14977151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions.
    Malhotra M; Garg A
    J Environ Manage; 2019 May; 238():72-83. PubMed ID: 30849600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein extraction from excess sludge by alkali-thermal hydrolysis.
    Gao J; Wang Y; Yan Y; Li Z; Chen M
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8628-8637. PubMed ID: 31904100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced mechanical deep dewatering of dewatered sludge by a thermal hydrolysis pre-treatment: Effects of temperature and retention time.
    Kim HJ; Chon K; Lee YG; Kim YK; Jang A
    Environ Res; 2020 Sep; 188():109746. PubMed ID: 32540570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment.
    Ngo PL; Udugama IA; Gernaey KV; Young BR; Baroutian S
    Chemosphere; 2021 Oct; 281():130890. PubMed ID: 34023763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.