These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34278594)

  • 1. Efficient workflow for the investigation of the catalytic cycle of water oxidation catalysts: Combining GFN-xTB and density functional theory.
    Menzel JP; Kloppenburg M; Belić J; de Groot HJM; Visscher L; Buda F
    J Comput Chem; 2021 Oct; 42(26):1885-1894. PubMed ID: 34278594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening of spin states for transition metal complexes with spin-polarized extended tight-binding methods.
    Neugebauer H; Bädorf B; Ehlert S; Hansen A; Grimme S
    J Comput Chem; 2023 Oct; 44(27):2120-2129. PubMed ID: 37401535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites.
    Pracht P; Bauer CA; Grimme S
    J Comput Chem; 2017 Nov; 38(30):2618-2631. PubMed ID: 28861911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of GFN1-xTB for periodic optimization of metal organic frameworks.
    Nurhuda M; Perry CC; Addicoat MA
    Phys Chem Chem Phys; 2022 May; 24(18):10906-10914. PubMed ID: 35451436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-orbit coupling corrections for the GFN-xTB method.
    Jha G; Heine T
    J Chem Phys; 2023 Jan; 158(4):044120. PubMed ID: 36725510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Silicon Interactions of GFN-xTB.
    Komissarov L; Verstraelen T
    J Chem Inf Model; 2021 Dec; 61(12):5931-5937. PubMed ID: 34890199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmark Study of Electrochemical Redox Potentials Calculated with Semiempirical and DFT Methods.
    Neugebauer H; Bohle F; Bursch M; Hansen A; Grimme S
    J Phys Chem A; 2020 Sep; 124(35):7166-7176. PubMed ID: 32786975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Computation of Free Energy Contributions for Association Reactions of Large Molecules.
    Spicher S; Grimme S
    J Phys Chem Lett; 2020 Aug; 11(16):6606-6611. PubMed ID: 32787231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are DFT Methods Accurate in Mononuclear Ruthenium-Catalyzed Water Oxidation? An ab Initio Assessment.
    Kang R; Yao J; Chen H
    J Chem Theory Comput; 2013 Apr; 9(4):1872-9. PubMed ID: 26583539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method.
    Bursch M; Hansen A; Grimme S
    Inorg Chem; 2017 Oct; 56(20):12485-12491. PubMed ID: 28981275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods.
    Ehlert S; Stahn M; Spicher S; Grimme S
    J Chem Theory Comput; 2021 Jul; 17(7):4250-4261. PubMed ID: 34185531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient calculation of protein-ligand binding free energy using GFN methods: the power of the cluster model.
    Chen YQ; Sheng YJ; Ma YQ; Ding HM
    Phys Chem Chem Phys; 2022 Jun; 24(23):14339-14347. PubMed ID: 35642694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Assessment of GFN Tight-Binding and Composite Density Functional Theory Methods for Calculating Gas-Phase Infrared Spectra.
    Pracht P; Grant DF; Grimme S
    J Chem Theory Comput; 2020 Nov; 16(11):7044-7060. PubMed ID: 33054183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark Investigation of SCC-DFTB against Standard and Hybrid DFT to Model Electronic Properties in Two-Dimensional MOFs for Thermoelectric Applications.
    Mahmoudi Gahrouei M; Vlastos N; D'Souza R; Odogwu EC; de Sousa Oliveira L
    J Chem Theory Comput; 2024 May; 20(9):3976-3992. PubMed ID: 38708963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB).
    Grimme S; Bannwarth C
    J Chem Phys; 2016 Aug; 145(5):054103. PubMed ID: 27497535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate and rapid prediction of p
    Sinha V; Laan JJ; Pidko EA
    Phys Chem Chem Phys; 2021 Feb; 23(4):2557-2567. PubMed ID: 33325474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Molecular Cluster Growing for Explicit Solvation by Efficient Force Field and Tight Binding Methods.
    Spicher S; Plett C; Pracht P; Hansen A; Grimme S
    J Chem Theory Comput; 2022 May; 18(5):3174-3189. PubMed ID: 35482317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on conformational energies of transition metal complexes.
    Bursch M; Hansen A; Pracht P; Kohn JT; Grimme S
    Phys Chem Chem Phys; 2021 Jan; 23(1):287-299. PubMed ID: 33336657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quickstart guide to model structures and interactions of artificial molecular muscles with efficient computational methods.
    Kohn J; Spicher S; Bursch M; Grimme S
    Chem Commun (Camb); 2021 Dec; 58(2):258-261. PubMed ID: 34881755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated reaction mechanisms and kinetics based transition state search process AMK-gau_xtb and its application to the substitution reaction of the nitroso group in 2,4,6-trinitrotoluene by hydroxide anion in the aqueous phase.
    Zhang G; Li J; Long B; Liu Z
    Phys Chem Chem Phys; 2021 Oct; 23(41):23673-23683. PubMed ID: 34642711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.