These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34278608)

  • 1. Improving squalene production by blocking the competitive branched pathways and expressing rate-limiting enzymes in Rhodopseudomonas palustris.
    Xu W; Wang D; Fan J; Zhang L; Ma X; Yao J; Wang Y
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1502-1508. PubMed ID: 34278608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing coenzyme Q
    Xu W; Ma X; Yao J; Wang D; Li W; Liu L; Shao L; Wang Y
    Lett Appl Microbiol; 2021 Jul; 73(1):88-95. PubMed ID: 33783839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Rhodopseudomonas palustris for squalene production.
    Xu W; Chai C; Shao L; Yao J; Wang Y
    J Ind Microbiol Biotechnol; 2016 May; 43(5):719-25. PubMed ID: 26886756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving squalene production by enhancing the NADPH/NADP
    Xu W; Yao J; Liu L; Ma X; Li W; Sun X; Wang Y
    Biotechnol Biofuels; 2019; 12():68. PubMed ID: 30962822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris.
    Oshlag JZ; Ma Y; Morse K; Burger BT; Lemke RA; Karlen SD; Myers KS; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous Production of Squalene from Glucose in Engineered Corynebacterium glutamicum Using Multiplex CRISPR Interference and High-Throughput Fermentation.
    Park J; Yu BJ; Choi JI; Woo HM
    J Agric Food Chem; 2019 Jan; 67(1):308-319. PubMed ID: 30558416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significantly Enhanced Production of Patchoulol in Metabolically Engineered
    Ma B; Liu M; Li ZH; Tao X; Wei DZ; Wang FQ
    J Agric Food Chem; 2019 Aug; 67(31):8590-8598. PubMed ID: 31287301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae.
    Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS
    Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of carotenoid biosynthetic pathways using squalene synthase.
    Furubayashi M; Li L; Katabami A; Saito K; Umeno D
    FEBS Lett; 2014 Jan; 588(3):436-42. PubMed ID: 24333579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced carotenoid production by Rhodopseudomonas palustris ATCC 17001 under low light conditions.
    Lopez-Romero J; Salgado-Manjarrez E; Torres L; Garcia-Peña EI
    J Biotechnol; 2020 Nov; 323():159-165. PubMed ID: 32827602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae.
    Su B; Song D; Yang F; Zhu H
    J Ind Microbiol Biotechnol; 2020 May; 47(4-5):383-393. PubMed ID: 32236768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acyclic carotenoid and cyclic apocarotenoid cleavage by an orthologue of lignostilbene-α,β-dioxygenase in Rhodopseudomonas palustris.
    Maeda I; Inaba A; Koike H; Yoneyama K; Ueda S; Yoshida K
    J Biochem; 2013 Nov; 154(5):449-54. PubMed ID: 23946507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic regulation and fermentation strategy for squalene production in Schizochytrium sp.
    Yang Q; Xie Z; Zheng X; Li K; Lu T; Lu Y; Chen C; Ling X
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2415-2431. PubMed ID: 35352151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of squalene by microbes: an update.
    Xu W; Ma X; Wang Y
    World J Microbiol Biotechnol; 2016 Dec; 32(12):195. PubMed ID: 27730499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering
    Du MM; Zhu ZT; Zhang GG; Zhao YQ; Gao B; Tao XY; Liu M; Ren YH; Wang FQ; Wei DZ
    J Agric Food Chem; 2022 Jan; 70(1):229-237. PubMed ID: 34955018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris.
    Wang Z; Wen Q; Harwood CS; Liang B; Yang J
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Yarrowia lipolytica for improving squalene production.
    Tang WY; Wang DP; Tian Y; Fan X; Wang C; Lu XY; Li PW; Ji XJ; Liu HH
    Bioresour Technol; 2021 Mar; 323():124652. PubMed ID: 33421835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carotenoids synthesis affects the salt tolerance mechanism of
    Li M; Zhu T; Yang R; Wang Z; Liu M; Yang J
    Front Microbiol; 2023; 14():1292937. PubMed ID: 38075924
    [No Abstract]   [Full Text] [Related]  

  • 20. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside.
    Bi L; Guan CJ; Yang GE; Yang F; Yan HY; Li QS
    Microbiol Res; 2016 Apr; 185():1-12. PubMed ID: 26946373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.