These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 34278776)
1. High-Density Three-Dimensional Network of Covalently Linked Nitric Oxide Donors to Achieve Antibacterial and Antibiofilm Surfaces. Wang L; Hou Z; Pranantyo D; Kang ET; Chan-Park M ACS Appl Mater Interfaces; 2021 Jul; 13(29):33745-33755. PubMed ID: 34278776 [TBL] [Abstract][Full Text] [Related]
2. A multi-defense strategy: Enhancing bactericidal activity of a medical grade polymer with a nitric oxide donor and surface-immobilized quaternary ammonium compound. Pant J; Gao J; Goudie MJ; Hopkins SP; Locklin J; Handa H Acta Biomater; 2017 Aug; 58():421-431. PubMed ID: 28579540 [TBL] [Abstract][Full Text] [Related]
3. Nitric Oxide-Releasing Silicone Oil with Tunable Payload for Antibacterial Applications. Qian Y; Chug MK; Brisbois EJ ACS Appl Bio Mater; 2022 Jul; 5(7):3396-3404. PubMed ID: 35792809 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide releasing poly(vinylidene fluoride-co-hexafluoropropylene) films using a fluorinated nitric oxide donor to greatly decrease chemical leaching. Zhou Y; Tan J; Wu J; Zhang Q; Andre J; Xi C; Chen Z; Meyerhoff ME Acta Biomater; 2019 May; 90():112-121. PubMed ID: 30980938 [TBL] [Abstract][Full Text] [Related]
5. Antibiofilm activity of Fmoc-phenylalanine against Gram-positive and Gram-negative bacterial biofilms. Singh H; Gahane A; Singh V; Ghosh S; Thakur A J Antibiot (Tokyo); 2021 Jun; 74(6):407-416. PubMed ID: 33637856 [TBL] [Abstract][Full Text] [Related]
6. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Gao Q; Yu M; Su Y; Xie M; Zhao X; Li P; Ma PX Acta Biomater; 2017 Mar; 51():112-124. PubMed ID: 28131941 [TBL] [Abstract][Full Text] [Related]
7. Universal Antifouling and Photothermal Antibacterial Surfaces Based on Multifunctional Metal-Phenolic Networks for Prevention of Biofilm Formation. Wang Y; Zou Y; Wu Y; Wei T; Lu K; Li L; Lin Y; Wu Y; Huang C; Zhang Y; Chen H; Yu Q ACS Appl Mater Interfaces; 2021 Oct; 13(41):48403-48413. PubMed ID: 34610742 [TBL] [Abstract][Full Text] [Related]
8. Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides. Zou Y; Lu K; Lin Y; Wu Y; Wang Y; Li L; Huang C; Zhang Y; Brash JL; Chen H; Yu Q ACS Appl Mater Interfaces; 2021 Sep; 13(38):45191-45200. PubMed ID: 34519474 [TBL] [Abstract][Full Text] [Related]
9. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies. Su Y; Zhi Z; Gao Q; Xie M; Yu M; Lei B; Li P; Ma PX Adv Healthc Mater; 2017 Mar; 6(6):. PubMed ID: 28128893 [TBL] [Abstract][Full Text] [Related]
10. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. van Hengel IAJ; Putra NE; Tierolf MWAM; Minneboo M; Fluit AC; Fratila-Apachitei LE; Apachitei I; Zadpoor AA Acta Biomater; 2020 Apr; 107():325-337. PubMed ID: 32145392 [TBL] [Abstract][Full Text] [Related]
11. Pandey R; Pinon V; Garren M; Maffe P; Mondal A; Brisbois EJ; Handa H ACS Appl Mater Interfaces; 2024 May; 16(19):24248-24260. PubMed ID: 38693878 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Xu LC; Wo Y; Meyerhoff ME; Siedlecki CA Acta Biomater; 2017 Mar; 51():53-65. PubMed ID: 28087484 [TBL] [Abstract][Full Text] [Related]
13. Antibiofilm Nitric Oxide-Releasing Polydopamine Coatings. Sadrearhami Z; Shafiee FN; Ho KKK; Kumar N; Krasowska M; Blencowe A; Wong EHH; Boyer C ACS Appl Mater Interfaces; 2019 Feb; 11(7):7320-7329. PubMed ID: 30688429 [TBL] [Abstract][Full Text] [Related]
14. Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces. Alves D; Magalhães A; Grzywacz D; Neubauer D; Kamysz W; Pereira MO Acta Biomater; 2016 Oct; 44():313-22. PubMed ID: 27514277 [TBL] [Abstract][Full Text] [Related]
15. Antibiotic-Impregnated Liquid-Infused Coatings Suppress the Formation of Methicillin-Resistant Villegas M; Alonso-Cantu C; Rahmani S; Wilson D; Hosseinidoust Z; Didar TF ACS Appl Mater Interfaces; 2021 Jun; 13(24):27774-27783. PubMed ID: 34115463 [TBL] [Abstract][Full Text] [Related]
16. In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. Zhou C; Wu Y; Thappeta KRV; Subramanian JTL; Pranantyo D; Kang ET; Duan H; Kline K; Chan-Park MB ACS Appl Mater Interfaces; 2017 Oct; 9(41):36269-36280. PubMed ID: 28945343 [TBL] [Abstract][Full Text] [Related]
18. Combined influence of nitric oxide and surface roughness in biofilm reduction across bacteria strains. Paricio L; Neufeld B; Reynolds M Biointerphases; 2019 Apr; 14(2):021004. PubMed ID: 30947504 [TBL] [Abstract][Full Text] [Related]
19. Application of Novel 3,4-Dihydroxyphenylalanine-Containing Antimicrobial Polymers for the Prevention of Uropathogen Attachment to Urinary Biomaterials. MacPhee RA; Koepsel J; Tailly T; Vangala SK; Brennan L; Cadieux PA; Burton JP; Wattengel C; Razvi H; Dalsin J J Endourol; 2019 Jul; 33(7):590-597. PubMed ID: 31140304 [No Abstract] [Full Text] [Related]
20. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus. He Y; Wan X; Xiao K; Lin W; Li J; Li Z; Luo F; Tan H; Li J; Fu Q Biomater Sci; 2019 Dec; 7(12):5369-5382. PubMed ID: 31621697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]