BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34278784)

  • 1. The function of Chalcogenophene in the Cyclomatelated Ring of the Cycloruthenated Dyes applied in Dye-Sensitized Solar Cell.
    Nguyen TD; Lan YP; Wu CG
    Inorg Chem; 2021 Aug; 60(15):11328-11337. PubMed ID: 34278784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells.
    Nguyen TD; Lan YP; Wu CG
    Inorg Chem; 2018 Feb; 57(3):1527-1534. PubMed ID: 29356508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the CF
    Nguyen TD; Lin CH; Wu CG
    Inorg Chem; 2017 Jan; 56(1):252-260. PubMed ID: 27958706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of Tetrabutylammonium on High-Efficiency Ruthenium Sensitizers for Both Outdoor and Indoor DSC Application.
    Nguyen TD; Lin CH; Mai CL; Wu CG
    ACS Omega; 2019 Jul; 4(7):11414-11423. PubMed ID: 31460246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of π-Conjugated Spacer in N-Alkylphenoxazine-Based Sensitizers Containing Double Anchors for Dye-Sensitized Solar Cells.
    Yen YS; Indumathi V
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33923398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of number of benzodioxan-stilbazole-based ancillary ligands on dye packing, photovoltage and photocurrent in dye-sensitized solar cells.
    Cheema H; Islam A; Han L; El-Shafei A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11617-24. PubMed ID: 24911059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzotriazole-containing D-π-A conjugated organic dyes for dye-sensitized solar cells.
    Yen YS; Lee CT; Hsu CY; Chou HH; Chen YC; Lin JT
    Chem Asian J; 2013 Apr; 8(4):809-16. PubMed ID: 23401366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of innovative triphenylamine-functionalized organic photosensitizers outperformed the benchmark dye N719 for high-efficiency dye-sensitized solar cells.
    Badawy SA; Abdel-Latif E; Fadda AA; Elmorsy MR
    Sci Rep; 2022 Jul; 12(1):12885. PubMed ID: 35902707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusing Thienyl with N-Annulated Perylene Dyes and Photovoltaic Parameters for Dye-Sensitized Solar Cells.
    Xu P; Zhang CR; Wu YZ; Yuan LH; Chen YH; Liu ZJ; Chen HS
    J Phys Chem A; 2020 May; 124(18):3626-3635. PubMed ID: 32282201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed complexes combining brazilein and brazilin with betanidin for dye-sensitized solar cell application: DFT and TD-DFT study.
    Malashi NM; Chande Jande YA; Wazzan N; Safi Z; Al-Qurashi OS; Costa R
    J Mol Graph Model; 2024 Mar; 127():108691. PubMed ID: 38086144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of three diphenylpyran isomer co-sensitizers with different sterical structures on N719-based dye sensitized solar cells.
    Wang X; Hang X; Bolag A; Yun W; Bao T; Ning J; Alata H; Ojiyed T
    RSC Adv; 2020 Nov; 10(71):43290-43298. PubMed ID: 35519685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium sensitizers with a hexylthiophene-modified terpyridine ligand for dye-sensitized solar cells: synthesis, photo- and electrochemical properties, and adsorption behavior to the TiO2 surface.
    Ozawa H; Yamamoto Y; Kawaguchi H; Shimizu R; Arakawa H
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3152-61. PubMed ID: 25587752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the Dual Character of Sulfur Atoms on Sensitizers in Dye-Sensitized Solar Cells.
    Aghazada S; Gao P; Yella A; Moehl T; Teuscher J; Moser JE; Grätzel M; Nazeeruddin MK
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26827-26833. PubMed ID: 27611814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles.
    Robson KC; Bomben PG; Berlinguette CP
    Dalton Trans; 2012 Jul; 41(26):7814-29. PubMed ID: 22643695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkyl-Group-Wrapped Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Branched Alkyl Chains Modulate the Aggregation of Dyes and Charge Recombination Processes.
    Singh AK; Mele Kavungathodi MF; Nithyanandhan J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2555-2565. PubMed ID: 31826606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Ruthenium Sensitizers with a Phenothiazine Conjugated Bipyridyl Ligand for High-Efficiency Dye-Sensitized Solar Cells.
    She Z; Cheng Y; Zhang L; Li X; Wu D; Guo Q; Lan J; Wang R; You J
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27831-7. PubMed ID: 26624527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar cells.
    Abbotto A; Manfredi N
    Dalton Trans; 2011 Dec; 40(46):12421-38. PubMed ID: 21833401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Engineering of Organic D-A-π-A Dyes Incorporated with a Dibutyl-Fluorene Moiety for High-Performance Dye-Sensitized Solar Cells.
    Wubie GZ; Lu MN; Desta MA; Weldekirstos HD; Lee MM; Wu WT; Li SR; Wei TC; Sun SS
    ACS Appl Mater Interfaces; 2021 May; 13(20):23513-23522. PubMed ID: 33840194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.