These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34278793)

  • 1. Optimized Hydrogen Mass Repartitioning Scheme Combined with Accurate Temperature/Pressure Evaluations for Thermodynamic and Kinetic Properties of Biological Systems.
    Jung J; Kasahara K; Kobayashi C; Oshima H; Mori T; Sugita Y
    J Chem Theory Comput; 2021 Aug; 17(8):5312-5321. PubMed ID: 34278793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Membrane Simulations with Hydrogen Mass Repartitioning.
    Balusek C; Hwang H; Lau CH; Lundquist K; Hazel A; Pavlova A; Lynch DL; Reggio PH; Wang Y; Gumbart JC
    J Chem Theory Comput; 2019 Aug; 15(8):4673-4686. PubMed ID: 31265271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning.
    Hopkins CW; Le Grand S; Walker RC; Roitberg AE
    J Chem Theory Comput; 2015 Apr; 11(4):1864-74. PubMed ID: 26574392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-time-step molecular dynamics can retard simulation of protein-ligand recognition process.
    Sahil M; Sarkar S; Mondal J
    Biophys J; 2023 Mar; 122(5):802-816. PubMed ID: 36726313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in Lipopolysaccharides.
    Gao Y; Lee J; Smith IPS; Lee H; Kim S; Qi Y; Klauda JB; Widmalm G; Khalid S; Im W
    J Chem Inf Model; 2021 Feb; 61(2):831-839. PubMed ID: 33442985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group-based evaluation of temperature and pressure for molecular dynamics simulation with a large time step.
    Jung J; Sugita Y
    J Chem Phys; 2020 Dec; 153(23):234115. PubMed ID: 33353318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field.
    Olesen K; Awasthi N; Bruhn DS; Pezeshkian W; Khandelia H
    J Chem Theory Comput; 2018 Jun; 14(6):3342-3350. PubMed ID: 29750867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison.
    Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small ionic radii limit time step in Martini 3 molecular dynamics simulations.
    Fábián B; Thallmair S; Hummer G
    J Chem Phys; 2022 Jul; 157(3):034101. PubMed ID: 35868932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers.
    Monje-Galvan V; Warburton L; Klauda JB
    Methods Mol Biol; 2019; 1949():325-339. PubMed ID: 30790265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer.
    Mustafa G; Nandekar PP; Yu X; Wade RC
    J Chem Phys; 2015 Dec; 143(24):243139. PubMed ID: 26723624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation.
    Jung J; Kobayashi C; Sugita Y
    J Chem Phys; 2018 Apr; 148(16):164109. PubMed ID: 29716226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers.
    Chiu SW; Jakobsson E; Subramaniam S; Scott HL
    Biophys J; 1999 Nov; 77(5):2462-9. PubMed ID: 10545348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of MD Simulations with Two-State Kinetic Rate Modeling Elucidates the Chain Melting Transition of Phospholipid Bilayers for Different Hydration Levels.
    Kowalik B; Schubert T; Wada H; Tanaka M; Netz RR; Schneck E
    J Phys Chem B; 2015 Nov; 119(44):14157-67. PubMed ID: 26439409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and kinetic properties of alpha-tocopherol in phospholipid bilayers, a molecular dynamics simulation study.
    Qin SS; Yu ZW; Yu YX
    J Phys Chem B; 2009 Dec; 113(52):16537-46. PubMed ID: 19928873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics and kinetics of large-time-step molecular dynamics.
    Rao F; Spichty M
    J Comput Chem; 2012 Feb; 33(5):475-83. PubMed ID: 22180257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Update of the CHARMM36 United Atom Chain Model for Hydrocarbons and Phospholipids.
    Yu Y; Klauda JB
    J Phys Chem B; 2020 Aug; 124(31):6797-6812. PubMed ID: 32639155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density artefacts at interfaces caused by multiple time-step effects in molecular dynamics simulations.
    Sidler D; Lehner M; Frasch S; Cristófol-Clough M; Riniker S
    F1000Res; 2018; 7():1745. PubMed ID: 30997032
    [No Abstract]   [Full Text] [Related]  

  • 20. Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations.
    Tang YZ; Chen WZ; Wang CX; Shi YY
    Eur Biophys J; 1999; 28(6):478-88. PubMed ID: 10460341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.