These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34278913)
1. Response characteristics and optimization of electroporation: simulation based on finite element method. Zhou C; Yan Z; Liu K Electromagn Biol Med; 2021 Jul; 40(3):321-337. PubMed ID: 34278913 [TBL] [Abstract][Full Text] [Related]
2. Process Analysis and Parameter Selection of Cardiomyocyte Electroporation Based on the Finite Element Method. Zhang H; Ji X; Zang L; Yan S; Wu X Cardiovasc Eng Technol; 2024 Feb; 15(1):22-38. PubMed ID: 37919538 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Experimentally Observed Complex Interplay between Pulse Duration, Electrical Field Strength, and Cell Orientation on Electroporation Outcome Using a Time-Dependent Nonlinear Numerical Model. Scuderi M; Dermol-Černe J; Batista Napotnik T; Chaigne S; Bernus O; Benoist D; Sigg DC; Rems L; Miklavčič D Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238597 [TBL] [Abstract][Full Text] [Related]
4. Calculating transmembrane voltage on the electric pulse-affected cancerous cell membrane: using molecular dynamics and finite element simulations. Mirshahi S; Vahedi B; Yazdani SO; Golab M; Sazgarnia A J Mol Model; 2024 Jun; 30(7):221. PubMed ID: 38904863 [TBL] [Abstract][Full Text] [Related]
5. Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation. Mi Y; Rui S; Li C; Yao C; Xu J; Bian C; Tang X Med Biol Eng Comput; 2017 Jul; 55(7):1109-1122. PubMed ID: 27853990 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance electrical impedance tomography for monitoring electric field distribution during tissue electroporation. Kranjc M; Bajd F; Serša I; Miklavčič D IEEE Trans Med Imaging; 2011 Oct; 30(10):1771-8. PubMed ID: 21521664 [TBL] [Abstract][Full Text] [Related]
7. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field. Liu L; Mao Z; Zhang J; Liu N; Liu QH PLoS One; 2016; 11(7):e0158739. PubMed ID: 27391692 [TBL] [Abstract][Full Text] [Related]
8. Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field. Lu W; Wu K; Hu X; Xie X; Ning J; Wang C; Zhou H; Yang G Int J Radiat Biol; 2017 Feb; 93(2):231-239. PubMed ID: 27586355 [TBL] [Abstract][Full Text] [Related]
9. Theoretical analysis for the fluctuation in the electric parameters of the electroporated cells before and during the electrofusion. Sherif S; Ghallab YH; Ismail Y Med Biol Eng Comput; 2022 Dec; 60(12):3585-3600. PubMed ID: 36258107 [TBL] [Abstract][Full Text] [Related]
10. Cell electrofusion based on nanosecond/microsecond pulsed electric fields. Li C; Ke Q; Yao C; Mi Y; Liu H; Lv Y; Yao C PLoS One; 2018; 13(5):e0197167. PubMed ID: 29795594 [TBL] [Abstract][Full Text] [Related]
11. Predicting electrotransfer in ultra-high frequency sub-microsecond square wave electric fields. Murauskas A; Staigvila G; Girkontaitė I; Zinkevičienė A; Ruzgys P; Šatkauskas S; Novickij J; Novickij V Electromagn Biol Med; 2020; 39(1):1-8. PubMed ID: 31884821 [TBL] [Abstract][Full Text] [Related]
12. Dependence of Electroporation Detection Threshold on Cell Radius: An Explanation to Observations Non Compatible with Schwan's Equation Model. Mercadal B; Vernier PT; Ivorra A J Membr Biol; 2016 Oct; 249(5):663-676. PubMed ID: 27170140 [TBL] [Abstract][Full Text] [Related]
13. Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse. Petrishia A; Sasikala M J Membr Biol; 2015 Dec; 248(6):1015-20. PubMed ID: 26054382 [TBL] [Abstract][Full Text] [Related]
14. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations. Huang F; Fang Z; Mast J; Chen W Bioelectromagnetics; 2013 May; 34(4):253-63. PubMed ID: 23322376 [TBL] [Abstract][Full Text] [Related]
15. On the molecular mechanisms implicated in the bipolar cancellation of membrane electroporation. Tang J; Wang S; Yang L; Wu Z; Jiang H; Zeng B; Gong Y Biochim Biophys Acta Biomembr; 2022 Feb; 1864(1):183811. PubMed ID: 34744023 [TBL] [Abstract][Full Text] [Related]
16. [Research progress of nanosecond pulsed electric field applied to intracellular electromanipulation]. Yao C; Mo D; Sun C; Chen X; Xiong Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1206-9. PubMed ID: 19024477 [TBL] [Abstract][Full Text] [Related]
17. Reversible electroporation study of realistic normal and cancerous cervical cells model using avalanche transistor-based nano pulse generator. Kumar M; Mishra A Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34488195 [TBL] [Abstract][Full Text] [Related]
18. Endovascular nonthermal irreversible electroporation: a finite element analysis. Maor E; Rubinsky B J Biomech Eng; 2010 Mar; 132(3):031008. PubMed ID: 20459196 [TBL] [Abstract][Full Text] [Related]
19. Multiphysics modelling of electroporation under uni- or bipolar nanosecond pulse sequences. Guo F; Qian K; Zhang L; Liu X; Peng H Bioelectrochemistry; 2021 Oct; 141():107878. PubMed ID: 34198114 [TBL] [Abstract][Full Text] [Related]
20. Simulation of Carbon Nanotube-Based Enhancement of Cellular Electroporation under Nanosecond Pulsed Electric Fields. Mi Y; Liu Q; Li P; Xu J Biomed Res Int; 2019; 2019():9654583. PubMed ID: 31930142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]