These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3427893)

  • 41. Biochemical heterogeneity of skeletal-muscle microsomal membranes. Membrane origin, membrane specificity and fibre types.
    Salviati G; Volpe P; Salvatori S; Betto R; Damiani E; Margreth A; Pasquali-Ronchetti I
    Biochem J; 1982 Feb; 202(2):289-301. PubMed ID: 6284127
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Calcium release channel of cardiac muscle sarcoplasmic reticulum].
    Otsu K; Tada M
    Nihon Rinsho; 1993 Jun; 51(6):1491-5. PubMed ID: 8391592
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development.
    Arai M; Otsu K; MacLennan DH; Periasamy M
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C614-20. PubMed ID: 1372478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of excitation-contraction-coupling components in chronically stimulated canine skeletal muscle.
    Ohlendieck K; Briggs FN; Lee KF; Wechsler AW; Campbell KP
    Eur J Biochem; 1991 Dec; 202(3):739-47. PubMed ID: 1662614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis, transfer, and phosphorylation of phosphoinositides in cardiac membranes.
    Wolf RA
    Am J Physiol; 1990 Dec; 259(6 Pt 1):C987-94. PubMed ID: 2175550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Ca channel blockers on Ca transport and Ca ATPase in skeletal and cardiac sarcoplasmic reticulum vesicles.
    Colvin RA; Pearson N; Messineo FC; Katz AM
    J Cardiovasc Pharmacol; 1982; 4(6):935-41. PubMed ID: 6185785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium handling by cardiac sarcoplasmic reticulum.
    Jones LR; Besch HR
    Tex Rep Biol Med; 1979; 39():19-35. PubMed ID: 162246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium fluxes in cardiac sarcolemma and sarcoplasmic reticulum isolated from endotoxin-shocked guinea pigs.
    Kutsky P; Parker JL
    Circ Shock; 1990 Apr; 30(4):349-64. PubMed ID: 2190713
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential centrifugation separates cardiac sarcolemmal and endosomal membranes from Langendorff-perfused rat hearts.
    Fuller W; Eaton P; Medina RA; Bell J; Shattock MJ
    Anal Biochem; 2001 Jun; 293(2):216-23. PubMed ID: 11399035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorylated intermediate of ATPase of isolated cardiac sarcoplasmic reticulum.
    Fanburg BL; Matsushita S
    J Mol Cell Cardiol; 1973 Feb; 5(1):111-5. PubMed ID: 4694746
    [No Abstract]   [Full Text] [Related]  

  • 52. Studies on glycoconjugate metabolism in developing skeletal muscle membranes.
    Clark GF; Smith PB
    Biochim Biophys Acta; 1983 Jan; 755(1):56-64. PubMed ID: 6824728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alterations in phospholipid N-methylation of cardiac subcellular membranes due to experimentally induced diabetes in rats.
    Panagia V; Taira Y; Ganguly PK; Tung S; Dhalla NS
    J Clin Invest; 1990 Sep; 86(3):777-84. PubMed ID: 2144301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Ca2+-dependent ATPases of the sarcoplasmic reticulum of skeletal and cardiac muscles and their ion-transporting fragments].
    Levitskiĭ DO; Grishin EV; Biriukova TV; Lebedev AV; Nikolaeva LN
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1981; 4(2):7-15. PubMed ID: 6459108
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of bupivacaine and tetracaine with the sarcoplasmic reticulum Ca2+ release channel of skeletal and cardiac muscles.
    Komai H; Lokuta AJ
    Anesthesiology; 1999 Mar; 90(3):835-43. PubMed ID: 10078686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immunoelectron microscopical localization of phospholamban in adult canine ventricular muscle.
    Jorgensen AO; Jones LR
    J Cell Biol; 1987 May; 104(5):1343-52. PubMed ID: 3553210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ryanodine receptor in different malignant hyperthermia-susceptible porcine muscles.
    Ervasti JM; Strand MA; Hanson TP; Mickelson JR; Louis CF
    Am J Physiol; 1991 Jan; 260(1 Pt 1):C58-66. PubMed ID: 1824808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Drug-induced calcium release from heavy sarcoplasmic reticulum of skeletal muscle.
    Wyskovsky W; Hauptner R; Suko J
    Biochim Biophys Acta; 1988 Feb; 938(1):89-96. PubMed ID: 3337819
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes.
    Otsu K; Fujii J; Periasamy M; Difilippantonio M; Uppender M; Ward DC; MacLennan DH
    Genomics; 1993 Aug; 17(2):507-9. PubMed ID: 8406504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum.
    Gross RW
    Biochemistry; 1985 Mar; 24(7):1662-8. PubMed ID: 3159423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.