BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34279086)

  • 1. A Visual Hydrogen Sensor Prototype for Monitoring Magnesium Implant Biodegradation.
    Smith ME; Rose DP; Cui X; Stastny AL; Zhang P; Heineman WR
    Anal Chem; 2021 Aug; 93(30):10487-10494. PubMed ID: 34279086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indicator Dyes and Catalytic Nanoparticles for Irreversible Visual Hydrogen Sensing.
    Smith ME; Stastny AL; Lynch JA; Yu Z; Zhang P; Heineman WR
    Anal Chem; 2020 Aug; 92(15):10651-10658. PubMed ID: 32628465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo characterization of magnesium alloy biodegradation using electrochemical H
    Zhao D; Wang T; Nahan K; Guo X; Zhang Z; Dong Z; Chen S; Chou DT; Hong D; Kumta PN; Heineman WR
    Acta Biomater; 2017 Mar; 50():556-565. PubMed ID: 28069511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo monitoring the biodegradation of magnesium alloys with an electrochemical H2 sensor.
    Zhao D; Wang T; Kuhlmann J; Dong Z; Chen S; Joshi M; Salunke P; Shanov VN; Hong D; Kumta PN; Heineman WR
    Acta Biomater; 2016 May; 36():361-8. PubMed ID: 27045693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual H
    Zhao D; Wang T; Hoagland W; Benson D; Dong Z; Chen S; Chou DT; Hong D; Wu J; Kumta PN; Heineman WR
    Acta Biomater; 2016 Nov; 45():399-409. PubMed ID: 27581394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo quantification of hydrogen gas concentration in bone marrow surrounding magnesium fracture fixation hardware using an electrochemical hydrogen gas sensor.
    Zhao D; Brown A; Wang T; Yoshizawa S; Sfeir C; Heineman WR
    Acta Biomater; 2018 Jun; 73():559-566. PubMed ID: 29684620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Nose for Hydrogen Gas: Fast, Sensitive H
    Penner RM
    Acc Chem Res; 2017 Aug; 50(8):1902-1910. PubMed ID: 28777545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials.
    Kuśnierczyk K; Basista M
    J Biomater Appl; 2017 Jan; 31(6):878-900. PubMed ID: 27368753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone.
    Liu J; Lin Y; Bian D; Wang M; Lin Z; Chu X; Li W; Liu Y; Shen Z; Liu Y; Tong Y; Xu Z; Zhang Y; Zheng Y
    Acta Biomater; 2019 Oct; 98():50-66. PubMed ID: 30853611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable magnesium alloys as temporary orthopaedic implants: a review.
    Kamrani S; Fleck C
    Biometals; 2019 Apr; 32(2):185-193. PubMed ID: 30659451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.
    Tan L; Wang Q; Lin X; Wan P; Zhang G; Zhang Q; Yang K
    Acta Biomater; 2014 May; 10(5):2333-40. PubMed ID: 24361529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium Implants: Prospects and Challenges.
    Chakraborty Banerjee P; Al-Saadi S; Choudhary L; Harandi SE; Singh R
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30609830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement and stabilization of optical hydrogen sensing ability of Au-Pd alloys.
    Nishijima Y; Kurotsu T; Yamasaku N; Takahashii H; Kurihara K; Beni T; Okazaki S; Arakawa T; Balčytis A; Seniutinas G; Juodkazis S
    Opt Express; 2020 Aug; 28(17):25383-25391. PubMed ID: 32907060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50.
    Amerstorfer F; Fischerauer SF; Fischer L; Eichler J; Draxler J; Zitek A; Meischel M; Martinelli E; Kraus T; Hann S; Stanzl-Tschegg SE; Uggowitzer PJ; Löffler JF; Weinberg AM; Prohaska T
    Acta Biomater; 2016 Sep; 42():440-450. PubMed ID: 27343708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications.
    Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications.
    Bian D; Zhou W; Deng J; Liu Y; Li W; Chu X; Xiu P; Cai H; Kou Y; Jiang B; Zheng Y
    Acta Biomater; 2017 Dec; 64():421-436. PubMed ID: 28987782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.
    Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.
    Willbold E; Kalla K; Bartsch I; Bobe K; Brauneis M; Remennik S; Shechtman D; Nellesen J; Tillmann W; Vogt C; Witte F
    Acta Biomater; 2013 Nov; 9(10):8509-17. PubMed ID: 23416472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The current trends of Mg alloys in biomedical applications-A review.
    Riaz U; Shabib I; Haider W
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1970-1996. PubMed ID: 30536973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic structure of Au-Pd bimetallic alloyed nanoparticles.
    Ding Y; Fan F; Tian Z; Wang ZL
    J Am Chem Soc; 2010 Sep; 132(35):12480-6. PubMed ID: 20712315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.