These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 34279354)
21. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst. Kaewpengkrow P; Atong D; Sricharoenchaikul V Environ Technol; 2012 Dec; 33(22-24):2489-95. PubMed ID: 23437645 [TBL] [Abstract][Full Text] [Related]
22. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires. Zheng D; Cheng J; Wang X; Yu G; Xu R; Dai C; Liu N; Wang N; Chen B Waste Manag; 2023 Sep; 169():196-207. PubMed ID: 37453307 [TBL] [Abstract][Full Text] [Related]
23. Oil Production by Pyrolysis of Real Plastic Waste. Fulgencio-Medrano L; García-Fernández S; Asueta A; Lopez-Urionabarrenechea A; Perez-Martinez BB; Arandes JM Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160542 [TBL] [Abstract][Full Text] [Related]
24. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851 [TBL] [Abstract][Full Text] [Related]
25. A "Wastes-Treat-Wastes" Technology: Role and Potential of Spent Fluid Catalytic Cracking Catalysts Assisted Pyrolysis of Discarded Car Tires. Zhao B; Wang C; Bian H Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451271 [TBL] [Abstract][Full Text] [Related]
26. Pyrolysis dynamics of two medical plastic wastes: Drivers, behaviors, evolved gases, reaction mechanisms, and pathways. Ding Z; Chen H; Liu J; Cai H; Evrendilek F; Buyukada M J Hazard Mater; 2021 Jan; 402():123472. PubMed ID: 32731115 [TBL] [Abstract][Full Text] [Related]
27. Status of waste tires and management practice in Botswana. Mmereki D; Machola B; Mokokwe K J Air Waste Manag Assoc; 2019 Oct; 69(10):1230-1246. PubMed ID: 28278033 [TBL] [Abstract][Full Text] [Related]
28. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. Chen J; Ma X; Yu Z; Deng T; Chen X; Chen L; Dai M Bioresour Technol; 2019 Oct; 289():121585. PubMed ID: 31207410 [TBL] [Abstract][Full Text] [Related]
29. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char. Pan Y; Sima J; Wang X; Zhou Y; Huang Q Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041 [TBL] [Abstract][Full Text] [Related]
30. Investigation on pyrolysis and incineration of chrome-tanned solid waste from tanneries for effective treatment and disposal: an experimental study. Velusamy M; Chakali B; Ganesan S; Tinwala F; Shanmugham Venkatachalam S Environ Sci Pollut Res Int; 2020 Aug; 27(24):29778-29790. PubMed ID: 31884540 [TBL] [Abstract][Full Text] [Related]
31. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor. Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358 [TBL] [Abstract][Full Text] [Related]
32. Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil. Baena-González J; Santamaria-Echart A; Aguirre JL; González S Waste Manag; 2020 Dec; 118():139-149. PubMed ID: 32892091 [TBL] [Abstract][Full Text] [Related]
33. Value-added performance of processed cardboard and farm breeding compost by pyrolysis. Ghorbel L; Rouissi T; Brar SK; López-González D; Ramirez AA; Godbout S Waste Manag; 2015 Apr; 38():164-73. PubMed ID: 25683201 [TBL] [Abstract][Full Text] [Related]
34. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Singh RK; Ruj B; Sadhukhan AK; Gupta P J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634 [TBL] [Abstract][Full Text] [Related]
35. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 2: Effect of process temperature on product characteristics and their future applications. Singh RK; Ruj B; Sadhukhan AK; Gupta P J Environ Manage; 2020 May; 261():110112. PubMed ID: 32001431 [TBL] [Abstract][Full Text] [Related]
36. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO₂ as a reaction medium. Kwon EE; Oh JI; Kim KH J Environ Manage; 2015 Sep; 160():306-11. PubMed ID: 26117814 [TBL] [Abstract][Full Text] [Related]
37. Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste. Zajemska M; Magdziarz A; Iwaszko J; Skrzyniarz M; Poskart A Fuel (Lond); 2022 Jul; 320():123981. PubMed ID: 36000017 [TBL] [Abstract][Full Text] [Related]
38. Quality improvement of pyrolysis oil from waste rubber by adding sawdust. Wang WL; Chang JM; Cai LP; Shi SQ Waste Manag; 2014 Dec; 34(12):2603-10. PubMed ID: 25223439 [TBL] [Abstract][Full Text] [Related]
39. Characterization of tars from recycling of PHA bioplastic and synthetic plastics using fast pyrolysis. Akgül A; Palmeiro-Sanchez T; Lange H; Magalhaes D; Moore S; Paiva A; Kazanç F; Trubetskaya A J Hazard Mater; 2022 Oct; 439():129696. PubMed ID: 36104917 [TBL] [Abstract][Full Text] [Related]
40. Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes. Pan J; Jiang H; Qing T; Zhang J; Tian K Chemosphere; 2021 Dec; 284():131348. PubMed ID: 34214932 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]