BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 34279392)

  • 1. Forward Precision Medicine: Micelles for Active Targeting Driven by Peptides.
    Prencipe F; Diaferia C; Rossi F; Ronga L; Tesauro D
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs.
    Accardo A; Aloj L; Aurilio M; Morelli G; Tesauro D
    Int J Nanomedicine; 2014; 9():1537-57. PubMed ID: 24741304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid Micelles for Peptide Drug Delivery.
    Esparza K; Jayawardena D; Onyuksel H
    Methods Mol Biol; 2019; 2000():43-57. PubMed ID: 31148007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoration of polymeric micelles with cancer-specific peptide ligands for active targeting of paclitaxel.
    Shahin M; Ahmed S; Kaur K; Lavasanifar A
    Biomaterials; 2011 Aug; 32(22):5123-33. PubMed ID: 21501865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micelles based on HPMA copolymers.
    Talelli M; Rijcken CJ; van Nostrum CF; Storm G; Hennink WE
    Adv Drug Deliv Rev; 2010 Feb; 62(2):231-9. PubMed ID: 20004693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic peptide-labelled micelles for active targeting of cells overexpressing EGF receptors.
    Tesauro D; Mastro R; Cusimano A; Emma MR; Cervello M
    Amino Acids; 2019 Aug; 51(8):1177-1185. PubMed ID: 31240409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells.
    Xiong XB; Mahmud A; Uludağ H; Lavasanifar A
    Biomacromolecules; 2007 Mar; 8(3):874-84. PubMed ID: 17315946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unmet needs in developing nanoparticles for precision medicine.
    Schwartz S
    Nanomedicine (Lond); 2017 Feb; 12(4):271-274. PubMed ID: 28093937
    [No Abstract]   [Full Text] [Related]  

  • 9. Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: In vitro evaluation on 2D and 3D tumor models.
    Sarisozen C; Dhokai S; Tsikudo EG; Luther E; Rachman IM; Torchilin VP
    Eur J Pharm Biopharm; 2016 Nov; 108():54-67. PubMed ID: 27569031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimuli-responsive polymersomes for cancer therapy.
    Thambi T; Park JH; Lee DS
    Biomater Sci; 2016 Jan; 4(1):55-69. PubMed ID: 26456625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy.
    Zhang CY; Chen Q; Wu WS; Guo XD; Cai CZ; Zhang LJ
    Colloids Surf B Biointerfaces; 2016 Jun; 142():55-64. PubMed ID: 26930034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positron emission tomography image-guided drug delivery: current status and future perspectives.
    Chakravarty R; Hong H; Cai W
    Mol Pharm; 2014 Nov; 11(11):3777-97. PubMed ID: 24865108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oseltamivir-conjugated polymeric micelles prepared by RAFT living radical polymerization as a new active tumor targeting drug delivery platform.
    Kapishon V; Allison S; Whitney RA; Cunningham MF; Szewczuk MR; Neufeld RJ
    Biomater Sci; 2016 Mar; 4(3):511-21. PubMed ID: 26788555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide delivery using phospholipid micelles.
    Banerjee A; Onyuksel H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(5):562-74. PubMed ID: 22847908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers.
    Raza F; Zafar H; You X; Khan A; Wu J; Ge L
    J Mater Chem B; 2019 Dec; 7(48):7639-7655. PubMed ID: 31746934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional redox-responsive and CD44 receptor targeting polymer-drug nanomedicine based curcumin and alendronate: synthesis, characterization and in vitro evaluation.
    Dong X; Zou S; Guo C; Wang K; Zhao F; Fan H; Yin J; Chen D
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):168-177. PubMed ID: 29239219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-decorated polymeric nanomedicines for precision cancer therapy.
    Sun H; Dong Y; Feijen J; Zhong Z
    J Control Release; 2018 Nov; 290():11-27. PubMed ID: 30290243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications.
    Rizzo LY; Theek B; Storm G; Kiessling F; Lammers T
    Curr Opin Biotechnol; 2013 Dec; 24(6):1159-66. PubMed ID: 23578464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic poly(hydroxyethylaspartamide) derivative-based micelles as drug delivery systems for ferulic acid.
    Craparo EF; Gennara C; Chiara OM; Girolamo T; Luisa BM; Gaetano G
    J Drug Target; 2009 Jan; 17(1):78-88. PubMed ID: 19016108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of magnetic targeting with synergistic inhibition of NF-κB and glutathione via micellar drug nanomedicine enhances its anti-tumor efficacy.
    Elhasany KA; Khattab SN; Bekhit AA; Ragab DM; Abdulkader MA; Zaky A; Helmy MW; Ashour HMA; Teleb M; Haiba NS; Elzoghby AO
    Eur J Pharm Biopharm; 2020 Oct; 155():162-176. PubMed ID: 32818610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.