These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34279900)

  • 1. High-Throughput Characterization of Cell Adhesion Strength Using Long-Channel Constriction-Based Microfluidics.
    Wei M; Zhang F; Zhang R; Lin JM; Yang N
    ACS Sens; 2021 Aug; 6(8):2838-2844. PubMed ID: 34279900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing deformability and surface friction of cancer cells.
    Byun S; Son S; Amodei D; Cermak N; Shaw J; Kang JH; Hecht VC; Winslow MM; Jacks T; Mallick P; Manalis SR
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7580-5. PubMed ID: 23610435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-enrichment circulating tumor cell detection and enumeration via deformability impedance cytometry.
    Ghassemi P; Ren X; Foster BM; Kerr BA; Agah M
    Biosens Bioelectron; 2020 Feb; 150():111868. PubMed ID: 31767345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.
    Chen W; Allen SG; Reka AK; Qian W; Han S; Zhao J; Bao L; Keshamouni VG; Merajver SD; Fu J
    BMC Cancer; 2016 Aug; 16():614. PubMed ID: 27501846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Intravascular Adhesion and Extravasation of Tumor Cells with Microfluidics.
    Osmani N; Follain G; Gensbittel V; García-León MJ; Harlepp S; Goetz JG
    Methods Mol Biol; 2021; 2294():111-132. PubMed ID: 33742397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of microfluidic methods for high-throughput cell deformability measurements.
    Urbanska M; Muñoz HE; Shaw Bagnall J; Otto O; Manalis SR; Di Carlo D; Guck J
    Nat Methods; 2020 Jun; 17(6):587-593. PubMed ID: 32341544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Cytometry for High-Throughput Characterization of Single Cell Cytoplasmic Viscosity Using Crossing Constriction Channels.
    Wang K; Sun X; Zhang Y; Wei Y; Chen D; Wu H; Song Z; Long R; Wang J; Chen J
    Cytometry A; 2020 Jun; 97(6):630-637. PubMed ID: 31637858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.
    Park ES; Jin C; Guo Q; Ang RR; Duffy SP; Matthews K; Azad A; Abdi H; Todenhöfer T; Bazov J; Chi KN; Black PC; Ma H
    Small; 2016 Apr; 12(14):1909-19. PubMed ID: 26917414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-flow measurement of cell-cell adhesion using oscillatory inertial microfluidics.
    Mutlu BR; Dubash T; Dietsche C; Mishra A; Ozbey A; Keim K; Edd JF; Haber DA; Maheswaran S; Toner M
    Lab Chip; 2020 May; 20(9):1612-1620. PubMed ID: 32301448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of Cellular Adhesion Strength and Stiffness to Fluid Shear Stress during Tumor Cell Rolling Motion.
    Li W; Mao S; Khan M; Zhang Q; Huang Q; Feng S; Lin JM
    ACS Sens; 2019 Jun; 4(6):1710-1715. PubMed ID: 31094503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating cell viability heterogeneity based on information fusion of multiple adhesion strengths.
    Wei M; Zhang R; Zhang F; Zhang Y
    Biotechnol Bioeng; 2021 Jun; 118(6):2360-2367. PubMed ID: 33694331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells.
    Zhang Y; Zhao Y; Chen D; Wang K; Wei Y; Xu Y; Huang C; Wang J; Chen J
    Analyst; 2019 Jan; 144(3):1008-1015. PubMed ID: 30648705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion analysis of single circulating tumor cells on a base layer of endothelial cells using open microfluidics.
    Mao S; Zhang Q; Li H; Zhang W; Huang Q; Khan M; Lin JM
    Chem Sci; 2018 Oct; 9(39):7694-7699. PubMed ID: 30393530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics and circulating tumor cells.
    Dong Y; Skelley AM; Merdek KD; Sprott KM; Jiang C; Pierceall WE; Lin J; Stocum M; Carney WP; Smirnov DA
    J Mol Diagn; 2013 Mar; 15(2):149-57. PubMed ID: 23266318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells.
    Qian W; Zhang Y; Chen W
    Small; 2015 Aug; 11(32):3850-72. PubMed ID: 25993898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformability study of breast cancer cells using microfluidics.
    Hou HW; Li QS; Lee GY; Kumar AP; Ong CN; Lim CT
    Biomed Microdevices; 2009 Jun; 11(3):557-64. PubMed ID: 19082733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip.
    Lee SW; Hyun KA; Kim SI; Kang JY; Jung HI
    J Chromatogr A; 2015 Jan; 1377():100-5. PubMed ID: 25542705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.
    Mietke A; Otto O; Girardo S; Rosendahl P; Taubenberger A; Golfier S; Ulbricht E; Aland S; Guck J; Fischer-Friedrich E
    Biophys J; 2015 Nov; 109(10):2023-36. PubMed ID: 26588562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic: an innovative tool for efficient cell sorting.
    Autebert J; Coudert B; Bidard FC; Pierga JY; Descroix S; Malaquin L; Viovy JL
    Methods; 2012 Jul; 57(3):297-307. PubMed ID: 22796377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells.
    Lee Y; Guan G; Bhagat AA
    Cytometry A; 2018 Dec; 93(12):1251-1254. PubMed ID: 30080307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.