These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34279956)

  • 41. Ionic Liquids Modulating CsPbI
    Han R; Zhao Q; Hazarika A; Li J; Cai H; Ni J; Zhang J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4061-4070. PubMed ID: 35037759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbI
    Liu X; Wang X; Zhang T; Miao Y; Qin Z; Chen Y; Zhao Y
    Angew Chem Int Ed Engl; 2021 May; 60(22):12351-12355. PubMed ID: 33760329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Role of Dimethylammonium Iodide in CsPbI
    Wang Y; Liu X; Zhang T; Wang X; Kan M; Shi J; Zhao Y
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16691-16696. PubMed ID: 31538395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Composition-Dependent Hot Carrier Relaxation Dynamics in Cesium Lead Halide (CsPbX
    Chung H; Jung SI; Kim HJ; Cha W; Sim E; Kim D; Koh WK; Kim J
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4160-4164. PubMed ID: 28319340
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A surface modifier enhances the performance of the all-inorganic CsPbI
    Wang K; Zhou J; Li X; Ahmad N; Xia H; Wu G; Zhang X; Wang B; Zhang D; Zou Y; Zhou H; Zhang Y
    Phys Chem Chem Phys; 2020 Aug; 22(32):17847-17856. PubMed ID: 32760997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stabilizing γ-CsPbI
    Ye Q; Ma F; Zhao Y; Yu S; Chu Z; Gao P; Zhang X; You J
    Small; 2020 Dec; 16(50):e2005246. PubMed ID: 33230955
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation.
    Stewart RJ; Grieco C; Larsen AV; Maier JJ; Asbury JB
    J Phys Chem Lett; 2016 Apr; 7(7):1148-53. PubMed ID: 26966792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interfacial passivation of CsPbI
    Zhou H; Chen M; Liu C; Zhang R; Li J; Liao S; Lu H; Yang Y
    Discov Nano; 2023 Feb; 18(1):11. PubMed ID: 36780122
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visualizing the Surface Photocurrent Distribution in Perovskite Photovoltaics.
    Chen J; Zhu GP; Li X; Lou YH; Dong C; Wang KL; Yuan S; Chen CH; Shi YR; Wang T; Wang ZK
    Small; 2022 Jul; 18(28):e2201930. PubMed ID: 35723194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved Performance for Thermally Evaporated Perovskite Light-Emitting Devices via Defect Passivation and Carrier Regulation.
    Jia K; Song L; Hu Y; Guo X; Liu X; Geng C; Xu S; Fan R; Huang L; Luan N; Bi W
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15928-15933. PubMed ID: 32134621
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface Pb-Dimer Passivated by Molecule Oxygen Notably Suppresses Charge Recombination in CsPbBr
    Qiao L; Long R; Fang WH
    J Phys Chem Lett; 2019 Sep; 10(18):5499-5506. PubMed ID: 31475525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells.
    Wu J; Cha H; Du T; Dong Y; Xu W; Lin CT; Durrant JR
    Adv Mater; 2022 Jan; 34(2):e2101833. PubMed ID: 34773315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Efficiency Perovskite Solar Cells with Imidazolium-Based Ionic Liquid for Surface Passivation and Charge Transport.
    Zhu X; Du M; Feng J; Wang H; Xu Z; Wang L; Zuo S; Wang C; Wang Z; Zhang C; Ren X; Priya S; Yang D; Liu SF
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4238-4244. PubMed ID: 33156572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantifying Polaron Formation and Charge Carrier Cooling in Lead-Iodide Perovskites.
    Bretschneider SA; Ivanov I; Wang HI; Miyata K; Zhu X; Bonn M
    Adv Mater; 2018 May; ():e1707312. PubMed ID: 29847699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel Lewis Base Cyclam Self-Passivation of Perovskites without an Anti-Solvent Process for Efficient Light-Emitting Diodes.
    Han B; Yuan S; Fang T; Zhang F; Shi Z; Song J
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14224-14232. PubMed ID: 32129073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells.
    Wang G; Wang L; Qiu J; Yan Z; Li C; Dai C; Zhen C; Tai K; Yu W; Jiang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7690-7700. PubMed ID: 31961639
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells.
    Zheng X; Deng Y; Chen B; Wei H; Xiao X; Fang Y; Lin Y; Yu Z; Liu Y; Wang Q; Huang J
    Adv Mater; 2018 Dec; 30(52):e1803428. PubMed ID: 30370954
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI
    Lu M; Zhang X; Zhang Y; Guo J; Shen X; Yu WW; Rogach AL
    Adv Mater; 2018 Dec; 30(50):e1804691. PubMed ID: 30306648
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Partial Substitution of Pb
    Ustinova MI; Mikheeva MM; Shilov GV; Dremova NN; Frolova L; Stevenson KJ; Aldoshin SM; Troshin PA
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5184-5194. PubMed ID: 33474932
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Performance X-ray Detection Based on One-Dimensional Inorganic Halide Perovskite CsPbI
    Zhang BB; Liu X; Xiao B; Hafsia AB; Gao K; Xu Y; Zhou J; Chen Y
    J Phys Chem Lett; 2020 Jan; 11(2):432-437. PubMed ID: 31885274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.