These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34280050)

  • 41. Basal and hormone-stimulated adenylate cyclase in liver plasma membranes: measurement by radioimmunoassay of cyclic AMP.
    Rosselin G; Freychet P
    Biochim Biophys Acta; 1973 Apr; 304(2):541-51. PubMed ID: 4351079
    [No Abstract]   [Full Text] [Related]  

  • 42. The role of cyclic AMP in the control of hepatic glucose production by glucagon and insulin.
    Exton JH; Lewis SB; Ho RJ; Park CR
    Adv Cyclic Nucleotide Res; 1972; 1():91-101. PubMed ID: 4353191
    [No Abstract]   [Full Text] [Related]  

  • 43. Cell membrane permeability change: an important step in hormone action.
    Petersen OH
    Experientia; 1974 Oct; 30(10):1105-8. PubMed ID: 4373270
    [No Abstract]   [Full Text] [Related]  

  • 44. Regulation of hepatic adenylate cyclase by glucagon, GTP, divalent cations, and adenosine.
    Rodbell M; Londos C
    Metabolism; 1976 Nov; 25(11 Suppl 1):1347-9. PubMed ID: 979634
    [No Abstract]   [Full Text] [Related]  

  • 45. Decreased glucagon-stimulated cyclic AMP production by isolated liver cells of rats with type 2 diabetes.
    Portha B; Chamras H; Broer Y; Picon L; Rosselin G
    Mol Cell Endocrinol; 1983 Sep; 32(1):13-26. PubMed ID: 6313452
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insulin release from mouse islets. Effect of glucose and hormones on adenylate cyclase.
    Davis B; Lazarus NR
    Biochem J; 1972 Sep; 129(2):373-9. PubMed ID: 4345273
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of cyclic adenosine 3':5'-monophosphate in the action of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT)on hepatic and renal metabolism.
    Kacew S; Singhal RL
    Biochem J; 1974 Jul; 142(1):145-52. PubMed ID: 4374184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elevation of intracellular cyclic AMP and stimulation of adenylate cyclase activity by vasoactive intestinal peptide and glucagon in the retinal pigment epithelium.
    Koh SW; Chader GJ
    J Neurochem; 1984 Dec; 43(6):1522-6. PubMed ID: 6092540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Signal transduction mechanism for glucagon-induced
    Yan AF; Chen T; Chen S; Tang DS; Liu F; Jiang X; Huang W; Ren CH; Hu CQ
    Int J Biol Sci; 2016; 12(12):1544-1554. PubMed ID: 27994518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in hormone responsiveness and cyclic AMP metabolism in rat hepatocytes during primary culture and effects of supplementing the medium with insulin and dexamethasone.
    Christoffersen T; Refsnes M; Brønstad GO; Ostby E; Huse J; Haffner F; Sand TE; Hunt NH; Sonne O
    Eur J Biochem; 1984 Jan; 138(2):217-26. PubMed ID: 6321168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of insulin-stimulated glucose transport in the isolated rat adipocyte. cAMP-independent effects of lipolytic and antilipolytic agents.
    Kuroda M; Honnor RC; Cushman SW; Londos C; Simpson IA
    J Biol Chem; 1987 Jan; 262(1):245-53. PubMed ID: 3025204
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on the alpha-andrenergic activation of hepatic glucose output. II. Investigation of the roles of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in the actions of phenylephrine in isolated hepatocytes.
    Cherrington AD; Assimacopoulos FD; Harper SC; Corbin JD; Park CR; Exton JH
    J Biol Chem; 1976 Sep; 251(17):5209-18. PubMed ID: 8457
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein kinase C inhibits cyclic adenosine monophosphate generation by histamine and truncated glucagon like peptide 1 in the human gastric cancer cell line HGT-1.
    McKenna P; Williams JM; Gespach CP; Hanson PJ
    Gut; 1993 Jul; 34(7):953-7. PubMed ID: 8393830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of enzyme activity by glucagon: increased hormonal activity of iodinated glucagon.
    Fuller RW; Bromer WW; Snoddy HD; Baker JC
    Adv Enzyme Regul; 1975; 13():201-15. PubMed ID: 1975
    [No Abstract]   [Full Text] [Related]  

  • 55. Cyclic AMP, prostaglandins, and the control of cell proliferation.
    MacManus JP; Whitfield JF
    Prostaglandins; 1974 Jun; 6(6):475-87. PubMed ID: 4366017
    [No Abstract]   [Full Text] [Related]  

  • 56. The ability of adenosine to decrease the concentration of fructose 2,6-bisphosphate in isolated hepatocytes. A cyclic AMP-mediated effect.
    Bartrons R; Van Schaftingen E; Hers HG
    Biochem J; 1984 Feb; 218(1):157-63. PubMed ID: 6324747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of hepatic enzyme synthesis by cyclic AMP.
    Wicks WD
    Ann N Y Acad Sci; 1971 Dec; 185():152-65. PubMed ID: 4399228
    [No Abstract]   [Full Text] [Related]  

  • 58. Hepatic pyruvate kinase. Regulation by glucagon, cyclic adenosine 3'-5'-monophosphate, and insulin in the perfused rat liver.
    Blair JB; Cimbala MA; Foster JL; Morgan RA
    J Biol Chem; 1976 Jun; 251(12):3756-62. PubMed ID: 180008
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Infection-induced hyperglucagonemia and altered hepatic response to glucagon in the rat.
    Zenser TV; DeRubertis FR; George DT; Rayfield EJ
    Am J Physiol; 1974 Dec; 227(6):1299-305. PubMed ID: 4155248
    [No Abstract]   [Full Text] [Related]  

  • 60. Glucagon-like peptide-1 activates the adenylyl cyclase system in rockfish enterocytes and brain membranes.
    Mommsen TP; Mojsov S
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Sep; 121(1):49-56. PubMed ID: 9972283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.