BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34280088)

  • 1. Spindle-AI: Sleep Spindle Number and Duration Estimation in Infant EEG.
    Wei L; Ventura S; Mathieson S; Boylan G; Lowery M; Mooney C
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):465-474. PubMed ID: 34280088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles.
    Wei L; Ventura S; Ryan MA; Mathieson S; Boylan GB; Lowery M; Mooney C
    Comput Biol Med; 2022 Nov; 150():106096. PubMed ID: 36162199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG.
    Wei L; Ventura S; Lowery M; Ryan MA; Mathieson S; Boylan GB; Mooney C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():58-61. PubMed ID: 33017930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep spindles in the healthy brain from birth through 18 years.
    Kwon H; Walsh KG; Berja ED; Manoach DS; Eden UT; Kramer MA; Chu CJ
    Sleep; 2023 Apr; 46(4):. PubMed ID: 36719044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy.
    Jaramillo V; Schoch SF; Markovic A; Kohler M; Huber R; Lustenberger C; Kurth S
    Neuroimage; 2023 Apr; 269():119924. PubMed ID: 36739104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation.
    Hassan U; Feld GB; Bergmann TO
    J Sleep Res; 2022 Dec; 31(6):e13733. PubMed ID: 36130730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spindles are highly heritable as identified by different spindle detectors.
    Goldschmied JR; Lacourse K; Maislin G; Delfrate J; Gehrman P; Pack FM; Staley B; Pack AI; Younes M; Kuna ST; Warby SC
    Sleep; 2021 Apr; 44(4):. PubMed ID: 33165618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A personalized semi-automatic sleep spindle detection (PSASD) framework.
    Kafashan M; Gupte G; Kang P; Hyche O; Luong AH; Prateek GV; Ju YS; Palanca BJA
    J Neurosci Methods; 2024 Jul; 407():110064. PubMed ID: 38301832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of an automated sleep spindle detection method for mouse electroencephalography.
    Uygun DS; Katsuki F; Bolortuya Y; Aguilar DD; McKenna JT; Thankachan S; McCarley RW; Basheer R; Brown RE; Strecker RE; McNally JM
    Sleep; 2019 Feb; 42(2):. PubMed ID: 30476300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robust two-stage sleep spindle detection approach using single-channel EEG.
    Jiang D; Ma Y; Wang Y
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326950
    [No Abstract]   [Full Text] [Related]  

  • 12. Spectral and temporal characterization of sleep spindles-methodological implications.
    Gomez-Pilar J; Gutiérrez-Tobal GC; Poza J; Fogel S; Doyon J; Northoff G; Hornero R
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33618345
    [No Abstract]   [Full Text] [Related]  

  • 13. Electroencephalographic sleep macrostructure and sleep spindles in early infancy.
    Ventura S; Mathieson SR; O'Toole JM; Livingstone V; Ryan MA; Boylan GB
    Sleep; 2022 Jan; 45(1):. PubMed ID: 34755881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic sleep spindles identification and classification with multitapers and convolution.
    Zapata IA; Wen P; Jones E; Fjaagesund S; Li Y
    Sleep; 2024 Jan; 47(1):. PubMed ID: 37294908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles.
    LaRocco J; Franaszczuk PJ; Kerick S; Robbins K
    J Neural Eng; 2018 Dec; 15(6):066015. PubMed ID: 30132445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep spindle and psychopathology characteristics of frequent nightmare recallers.
    Picard-Deland C; Carr M; Paquette T; Saint-Onge K; Nielsen T
    Sleep Med; 2018 Oct; 50():113-131. PubMed ID: 30031989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalp EEG markers of normal infant development using visual and computational approaches.
    Goetz P; Hu D; To PD; Garner C; Yuen T; Skora C; Shrey DW; Lopour BA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6528-6532. PubMed ID: 34892605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sleep spindle detection algorithm that emulates human expert spindle scoring.
    Lacourse K; Delfrate J; Beaudry J; Peppard P; Warby SC
    J Neurosci Methods; 2019 Mar; 316():3-11. PubMed ID: 30107208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Visual Scoring of Sleep in Infants 0 to 2 Months of Age.
    Grigg-Damberger MM
    J Clin Sleep Med; 2016 Mar; 12(3):429-45. PubMed ID: 26951412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: A high-density EEG investigation.
    Plante DT; Goldstein MR; Cook JD; Smith R; Riedner BA; Rumble ME; Jelenchick L; Roth A; Tononi G; Benca RM; Peterson MJ
    Eur Neuropsychopharmacol; 2015 Oct; 25(10):1600-10. PubMed ID: 26195197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.