These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34280186)
1. Hamming-shifting graph of genomic short reads: Efficient construction and its application for compression. Liu Y; Li J PLoS Comput Biol; 2021 Jul; 17(7):e1009229. PubMed ID: 34280186 [TBL] [Abstract][Full Text] [Related]
2. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph. Benoit G; Lemaitre C; Lavenier D; Drezen E; Dayris T; Uricaru R; Rizk G BMC Bioinformatics; 2015 Sep; 16():288. PubMed ID: 26370285 [TBL] [Abstract][Full Text] [Related]
3. Assembly of long error-prone reads using de Bruijn graphs. Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617 [TBL] [Abstract][Full Text] [Related]
5. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches. Cherukuri Y; Janga SC BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636 [TBL] [Abstract][Full Text] [Related]
6. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs. Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174 [TBL] [Abstract][Full Text] [Related]
7. Compression of next-generation sequencing reads aided by highly efficient de novo assembly. Jones DC; Ruzzo WL; Peng X; Katze MG Nucleic Acids Res; 2012 Dec; 40(22):e171. PubMed ID: 22904078 [TBL] [Abstract][Full Text] [Related]
8. Reference-based compression of short-read sequences using path encoding. Kingsford C; Patro R Bioinformatics; 2015 Jun; 31(12):1920-8. PubMed ID: 25649622 [TBL] [Abstract][Full Text] [Related]
9. SAGE: String-overlap Assembly of GEnomes. Ilie L; Haider B; Molnar M; Solis-Oba R BMC Bioinformatics; 2014 Sep; 15(1):302. PubMed ID: 25225118 [TBL] [Abstract][Full Text] [Related]
10. The present and future of de novo whole-genome assembly. Sohn JI; Nam JW Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661 [TBL] [Abstract][Full Text] [Related]
11. Read mapping on de Bruijn graphs. Limasset A; Cazaux B; Rivals E; Peterlongo P BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous compression of multiple error-corrected short-read sets for faster data transmission and better de novo assemblies. Tang T; Hutvagner G; Wang W; Li J Brief Funct Genomics; 2022 Sep; 21(5):387-398. PubMed ID: 35848773 [TBL] [Abstract][Full Text] [Related]
14. Integrating long-range connectivity information into de Bruijn graphs. Turner I; Garimella KV; Iqbal Z; McVean G Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215 [TBL] [Abstract][Full Text] [Related]
15. FSG: Fast String Graph Construction for De Novo Assembly. Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R J Comput Biol; 2017 Oct; 24(10):953-968. PubMed ID: 28715269 [TBL] [Abstract][Full Text] [Related]
16. Accurate determination of node and arc multiplicities in de bruijn graphs using conditional random fields. Steyaert A; Audenaert P; Fostier J BMC Bioinformatics; 2020 Sep; 21(1):402. PubMed ID: 32928110 [TBL] [Abstract][Full Text] [Related]
17. FastEtch: A Fast Sketch-Based Assembler for Genomes. Ghosh P; Kalyanaraman A IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776 [TBL] [Abstract][Full Text] [Related]
18. Transformation of FASTA files into feature vectors for unsupervised compression of short reads databases. Tang T; Li J J Bioinform Comput Biol; 2021 Feb; 19(1):2050048. PubMed ID: 33472569 [TBL] [Abstract][Full Text] [Related]
20. BrownieAligner: accurate alignment of Illumina sequencing data to de Bruijn graphs. Heydari M; Miclotte G; Van de Peer Y; Fostier J BMC Bioinformatics; 2018 Sep; 19(1):311. PubMed ID: 30180801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]