These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34280360)

  • 1. Syntrophy of Crypthecodinium cohnii and immobilized Zymomonas mobilis for docosahexaenoic acid production from sucrose-containing substrates.
    Strazdina I; Klavins L; Galinina N; Shvirksts K; Grube M; Stalidzans E; Kalnenieks U
    J Biotechnol; 2021 Sep; 338():63-70. PubMed ID: 34280360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol.
    de Swaaf ME; Pronk JT; Sijtsma L
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):40-3. PubMed ID: 12658513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production.
    Senthilkumar V; Rameshkumar N; Busby SJ; Gunasekaran P
    J Appl Microbiol; 2004; 96(4):671-6. PubMed ID: 15012804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii.
    De Swaaf ME; Sijtsma L; Pronk JT
    Biotechnol Bioeng; 2003 Mar; 81(6):666-72. PubMed ID: 12529880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Laboratory Evolution and Metabolic Engineering of
    Huang J; Wang X; Chen X; Li H; Chen Y; Hu Z; Yang S
    ACS Synth Biol; 2023 Apr; 12(4):1297-1307. PubMed ID: 37036829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and Stoichiometric Modeling-Based Analysis of Docosahexaenoic Acid (DHA) Production Potential by
    Berzins K; Muiznieks R; Baumanis MR; Strazdina I; Shvirksts K; Prikule S; Galvanauskas V; Pleissner D; Pentjuss A; Grube M; Kalnenieks U; Stalidzans E
    Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new synthetic medium for the optimization of docosahexaenoic acid production in Crypthecodinium cohnii.
    Song P; Kuryatov A; Axelsen PH
    PLoS One; 2020; 15(3):e0229556. PubMed ID: 32196504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen Feeding Strategies and Metabolomic Analysis To Alleviate High-Nitrogen Inhibition on Docosahexaenoic Acid Production in Crypthecodinium cohnii.
    Liu L; Wang F; Yang J; Li X; Cui J; Liu J; Shi M; Wang K; Chen L; Zhang W
    J Agric Food Chem; 2018 Oct; 66(40):10640-10650. PubMed ID: 30226986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of lignocellulosic biomass towards the production of omega-3 fatty acids by the heterotrophic marine microalga Crypthecodinium cohnii.
    Karnaouri A; Chalima A; Kalogiannis KG; Varamogianni-Mamatsi D; Lappas A; Topakas E
    Bioresour Technol; 2020 May; 303():122899. PubMed ID: 32028216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4.
    Braga A; Gomes D; Rainha J; Cardoso BB; Amorim C; Silvério SC; Fernández-Lobato M; Rodrigues JL; Rodrigues LR
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4617-4626. PubMed ID: 35739346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated fed-batch strategy and metabolomic analysis to achieve high docosahexaenoic acid productivity in Crypthecodinium cohnii.
    Liu L; Wang F; Pei G; Cui J; Diao J; Lv M; Chen L; Zhang W
    Microb Cell Fact; 2020 Apr; 19(1):91. PubMed ID: 32299433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Crypthecodinium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock.
    Gong Y; Liu J; Jiang M; Liang Z; Jin H; Hu X; Wan X; Hu C
    PLoS One; 2015; 10(5):e0125368. PubMed ID: 25942565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of multi-parameter flow cytometry to study the impact of n-dodecane additions to marine dinoflagellate microalga Crypthecodinium cohnii batch fermentations and DHA production.
    Lopes da Silva T; Reis A
    J Ind Microbiol Biotechnol; 2008 Aug; 35(8):875-87. PubMed ID: 18461374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levan production by Zymomonas mobilis in batch and continuous fermentation systems.
    Silbir S; Dagbagli S; Yegin S; Baysal T; Goksungur Y
    Carbohydr Polym; 2014 Jan; 99():454-61. PubMed ID: 24274530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production.
    da Silva TL; Mendes A; Mendes RL; Calado V; Alves SS; Vasconcelos JM; Reis A
    J Ind Microbiol Biotechnol; 2006 Jun; 33(6):408-16. PubMed ID: 16501933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of twenty standard amino acids on biochemical constituents, docosahexaenoic acid production and metabolic activity changes of Crypthecodinium cohnii.
    Safdar W; Zan X; Shamoon M; Sharif HR; Mukama O; Tang X; Song Y
    Bioresour Technol; 2017 Aug; 238():738-743. PubMed ID: 28433582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic activity of zymomonas mobilis extracellular "levan-levansucrase" complex in sucrose medium.
    Bekers M; Upite D; Kaminska E; Laukevics J; Ionina R; Vigants A
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):321-4. PubMed ID: 15296187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sesamol Enhances Cell Growth and the Biosynthesis and Accumulation of Docosahexaenoic Acid in the Microalga Crypthecodinium cohnii.
    Liu B; Liu J; Sun P; Ma X; Jiang Y; Chen F
    J Agric Food Chem; 2015 Jun; 63(23):5640-5. PubMed ID: 26017014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.
    Wang H; Cao S; Wang WT; Wang KT; Jia X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):861-71. PubMed ID: 27033536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of a charge balanced genome-scale metabolic model to study the energy-uncoupled growth of Zymomonas mobilis ZM1.
    Motamedian E; Saeidi M; Shojaosadati SA
    Mol Biosyst; 2016 Apr; 12(4):1241-9. PubMed ID: 26883123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.