These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34280429)
1. A deep learning algorithm for sleep stage scoring in mice based on a multimodal network with fine-tuning technique. Akada K; Yagi T; Miura Y; Beuckmann CT; Koyama N; Aoshima K Neurosci Res; 2021 Dec; 173():99-105. PubMed ID: 34280429 [TBL] [Abstract][Full Text] [Related]
2. Design and validation of a computer-based sleep-scoring algorithm. Louis RP; Lee J; Stephenson R J Neurosci Methods; 2004 Feb; 133(1-2):71-80. PubMed ID: 14757347 [TBL] [Abstract][Full Text] [Related]
3. A Deep Learning Approach for Automated Sleep-Wake Scoring in Pre-Clinical Animal Models. Svetnik V; Wang TC; Xu Y; Hansen BJ; V Fox S J Neurosci Methods; 2020 May; 337():108668. PubMed ID: 32135210 [TBL] [Abstract][Full Text] [Related]
4. Noninvasive three-state sleep-wake staging in mice using electric field sensors. Kloefkorn H; Aiani LM; Lakhani A; Nagesh S; Moss A; Goolsby W; Rehg JM; Pedersen NP; Hochman S J Neurosci Methods; 2020 Oct; 344():108834. PubMed ID: 32619585 [TBL] [Abstract][Full Text] [Related]
5. [Identifying Depressive Disorder With Sleep Electroencephalogram Data: A Study Based on Deep Learning]. Tao R; Ding SN; Chen J; Zhu XM; Ni ZJ; Hu LM; Zhang Y; Xu Y; Sun HQ Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 Mar; 54(2):287-292. PubMed ID: 36949687 [TBL] [Abstract][Full Text] [Related]
6. The reliability and functional validity of visual and semiautomatic sleep/wake scoring in the Møll-Wistar rat. Neckelmann D; Olsen OE; Fagerland S; Ursin R Sleep; 1994 Mar; 17(2):120-31. PubMed ID: 8036366 [TBL] [Abstract][Full Text] [Related]
7. A novel machine learning system for identifying sleep-wake states in mice. Fraigne JJ; Wang J; Lee H; Luke R; Pintwala SK; Peever JH Sleep; 2023 Jun; 46(6):. PubMed ID: 37021715 [TBL] [Abstract][Full Text] [Related]
8. Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea. Korkalainen H; Aakko J; Duce B; Kainulainen S; Leino A; Nikkonen S; Afara IO; Myllymaa S; Töyräs J; Leppänen T Sleep; 2020 Nov; 43(11):. PubMed ID: 32436942 [TBL] [Abstract][Full Text] [Related]
9. A deep learning algorithm based on 1D CNN-LSTM for automatic sleep staging. Zhao D; Jiang R; Feng M; Yang J; Wang Y; Hou X; Wang X Technol Health Care; 2022; 30(2):323-336. PubMed ID: 34180436 [TBL] [Abstract][Full Text] [Related]
10. Deep learning in the cross-time frequency domain for sleep staging from a single-lead electrocardiogram. Li Q; Li Q; Liu C; Shashikumar SP; Nemati S; Clifford GD Physiol Meas; 2018 Dec; 39(12):124005. PubMed ID: 30524025 [TBL] [Abstract][Full Text] [Related]
11. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements. Yaghouby F; O'Hara BF; Sunderam S Int J Neural Syst; 2016 Jun; 26(4):1650017. PubMed ID: 27121993 [TBL] [Abstract][Full Text] [Related]
12. High-throughput visual assessment of sleep stages in mice using machine learning. Geuther B; Chen M; Galante RJ; Han O; Lian J; George J; Pack AI; Kumar V Sleep; 2022 Feb; 45(2):. PubMed ID: 34718812 [TBL] [Abstract][Full Text] [Related]
13. IntelliSleepScorer, a software package with a graphic user interface for automated sleep stage scoring in mice based on a light gradient boosting machine algorithm. Wang LA; Kern R; Yu E; Choi S; Pan JQ Sci Rep; 2023 Mar; 13(1):4275. PubMed ID: 36922536 [TBL] [Abstract][Full Text] [Related]
14. WaveSleepNet: An interpretable deep convolutional neural network for the continuous classification of mouse sleep and wake. Kam K; Rapoport DM; Parekh A; Ayappa I; Varga AW J Neurosci Methods; 2021 Aug; 360():109224. PubMed ID: 34052291 [TBL] [Abstract][Full Text] [Related]
15. Scoring transitions to REM sleep in rats based on the EEG phenomena of pre-REM sleep: an improved analysis of sleep structure. Benington JH; Kodali SK; Heller HC Sleep; 1994 Feb; 17(1):28-36. PubMed ID: 8191200 [TBL] [Abstract][Full Text] [Related]
16. MLS-Net: An Automatic Sleep Stage Classifier Utilizing Multimodal Physiological Signals in Mice. Jiang C; Xie W; Zheng J; Yan B; Luo J; Zhang J Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194635 [TBL] [Abstract][Full Text] [Related]
17. Automatic sleep-stage scoring based on photoplethysmographic signals. Wu X; Yang J; Pan Y; Zhang X; Luo Y Physiol Meas; 2020 Jun; 41(6):065008. PubMed ID: 32392540 [TBL] [Abstract][Full Text] [Related]
18. Neonatal sleep stage identification using long short-term memory learning system. Fraiwan L; Alkhodari M Med Biol Eng Comput; 2020 Jun; 58(6):1383-1391. PubMed ID: 32281071 [TBL] [Abstract][Full Text] [Related]
19. Automatic sleep scoring with LSTM networks: impact of time granularity and input signals. Tăuțan AM; Rossi AC; Ionescu B Biomed Tech (Berl); 2022 Aug; 67(4):267-281. PubMed ID: 35660133 [TBL] [Abstract][Full Text] [Related]
20. Assessing REM sleep in mice using video data. McShane BB; Galante RJ; Biber M; Jensen ST; Wyner AJ; Pack AI Sleep; 2012 Mar; 35(3):433-42. PubMed ID: 22379250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]