These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34280600)

  • 1. Hydrogel foams from liquid foam templates: Properties and optimisation.
    Djemaa IB; Auguste S; Drenckhan-Andreatta W; Andrieux S
    Adv Colloid Interface Sci; 2021 Aug; 294():102478. PubMed ID: 34280600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid foam templating - A route to tailor-made polymer foams.
    Andrieux S; Quell A; Stubenrauch C; Drenckhan W
    Adv Colloid Interface Sci; 2018 Jun; 256():276-290. PubMed ID: 29728156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Generation of Alginate-Based Hydrogel Foams Using CO
    Ben Djemaa I; Andrieux S; Auguste S; Jacomine L; Tarnowska M; Drenckhan-Andreatta W
    Gels; 2022 Jul; 8(7):. PubMed ID: 35877529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Ordered Gelatin Methacryloyl Hydrogel Foams with Tunable Pore Size.
    Dehli F; Rebers L; Stubenrauch C; Southan A
    Biomacromolecules; 2019 Jul; 20(7):2666-2674. PubMed ID: 31120732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam.
    Furuta Y; Oikawa N; Kurita R
    Sci Rep; 2016 Nov; 6():37506. PubMed ID: 27874060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocellulose-based foam morphological, mechanical and thermal properties in relation to hydrogel precursor structure and rheology.
    Fneich F; Ville J; Seantier B; Aubry T
    Carbohydr Polym; 2021 Feb; 253():117233. PubMed ID: 33278990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring and visualising pore openings in gelatin-based hydrogel foams.
    Dehli F; Southan A; Drenckhan W; Stubenrauch C
    J Colloid Interface Sci; 2021 Apr; 588():326-335. PubMed ID: 33422781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Lived and Thermoresponsive Emulsion Foams Stabilized by Self-Assembled Saponin Nanofibrils and Fibrillar Network.
    Wan Z; Sun Y; Ma L; Zhou F; Guo J; Hu S; Yang X
    Langmuir; 2018 Apr; 34(13):3971-3980. PubMed ID: 29546991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary foams: stabilization and functionalization of porous liquids and solids.
    Zhang Y; Allen MC; Zhao R; Deheyn DD; Behrens SH; Meredith JC
    Langmuir; 2015 Mar; 31(9):2669-76. PubMed ID: 25689577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants.
    Tong X; Shi Z; Xu L; Lin J; Zhang D; Wang K; Li Y; Wen C
    Acta Biomater; 2020 Jan; 102():481-492. PubMed ID: 31740321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating Pore-Opening of Hydrogel Foams at the Scale of Freestanding Thin Films.
    Andrieux S; Patil M; Jacomine L; Hourlier-Fargette A; Heitkam S; Drenckhan W
    Macromol Rapid Commun; 2022 Sep; 43(17):e2200189. PubMed ID: 35579423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monodisperse polystyrene foams via polymerization of foamed emulsions: structure and mechanical properties.
    Elsing J; Stefanov T; Gilchrist MD; Stubenrauch C
    Phys Chem Chem Phys; 2017 Feb; 19(7):5477-5485. PubMed ID: 28165070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid cellulose nanofiber based foams - Towards facile design of sustained drug delivery systems.
    Svagan AJ; Benjamins JW; Al-Ansari Z; Shalom DB; Müllertz A; Wågberg L; Löbmann K
    J Control Release; 2016 Dec; 244(Pt A):74-82. PubMed ID: 27847327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficacy of hydrogel foams in talc Pleurodesis.
    Baxter J; Lima TA; Huneke R; Kanach CJ; Johal P; Reimold E; Alvarez NJ; Laub GW
    J Cardiothorac Surg; 2020 Apr; 15(1):58. PubMed ID: 32295636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Proteins on Formation, Drainage, and Stability of Liquid Food Foams.
    Narsimhan G; Xiang N
    Annu Rev Food Sci Technol; 2018 Mar; 9():45-63. PubMed ID: 29272186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying.
    Cervin NT; Johansson E; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2016 May; 8(18):11682-9. PubMed ID: 27070532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of foams with inorganic colloidal particles.
    Gonzenbach UT; Studart AR; Tervoort E; Gauckler LJ
    Langmuir; 2006 Dec; 22(26):10983-8. PubMed ID: 17154574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foam-Based Drug Delivery: A Newer Approach for Pharmaceutical Dosage Form.
    Kumar M; Thakur A; Mandal UK; Thakur A; Bhatia A
    AAPS PharmSciTech; 2022 Aug; 23(7):244. PubMed ID: 36042060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Solid Foams with Controlled Polydispersity Using Microfluidics.
    Andrieux S; Drenckhan W; Stubenrauch C
    Langmuir; 2018 Jan; 34(4):1581-1590. PubMed ID: 29309162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.