These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34280849)

  • 1. De novo design with deep generative models based on 3D similarity scoring.
    Papadopoulos K; Giblin KA; Janet JP; Patronov A; Engkvist O
    Bioorg Med Chem; 2021 Aug; 44():116308. PubMed ID: 34280849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and binding profile of haloperidol-based bivalent ligands targeting dopamine D(2)-like receptors.
    Salama I; Löber S; Hübner H; Gmeiner P
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3753-6. PubMed ID: 25047579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Zhang J; Chen H
    J Chem Inf Model; 2022 Jul; 62(14):3291-3306. PubMed ID: 35793555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CoMFA-based prediction of agonist affinities at recombinant D1 vs D2 dopamine receptors.
    Wilcox RE; Tseng T; Brusniak MY; Ginsburg B; Pearlman RS; Teeter M; DuRand C; Starr S; Neve KA
    J Med Chem; 1998 Oct; 41(22):4385-99. PubMed ID: 9784114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Generative Autoencoder in De Novo Molecular Design.
    Blaschke T; Olivecrona M; Engkvist O; Bajorath J; Chen H
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29235269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning.
    Yoshimori A; Kawasaki E; Kanai C; Tasaka T
    Chem Pharm Bull (Tokyo); 2020; 68(3):227-233. PubMed ID: 32115529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models.
    Xie W; Wang F; Li Y; Lai L; Pei J
    J Chem Inf Model; 2022 May; 62(10):2269-2279. PubMed ID: 35544331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design.
    Wang M; Hsieh CY; Wang J; Wang D; Weng G; Shen C; Yao X; Bing Z; Li H; Cao D; Hou T
    J Med Chem; 2022 Jul; 65(13):9478-9492. PubMed ID: 35713420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design.
    Skalic M; Sabbadin D; Sattarov B; Sciabola S; De Fabritiis G
    Mol Pharm; 2019 Oct; 16(10):4282-4291. PubMed ID: 31437001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D similarity method for scaffold hopping from known drugs or natural ligands to new chemotypes.
    Jenkins JL; Glick M; Davies JW
    J Med Chem; 2004 Dec; 47(25):6144-59. PubMed ID: 15566286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design.
    Song T; Ren Y; Wang S; Han P; Wang L; Li X; Rodriguez-Patón A
    Methods; 2023 Mar; 211():10-22. PubMed ID: 36764588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haloperidol bound D
    Fan L; Tan L; Chen Z; Qi J; Nie F; Luo Z; Cheng J; Wang S
    Nat Commun; 2020 Feb; 11(1):1074. PubMed ID: 32103023
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Atance SR; Diez JV; Engkvist O; Olsson S; Mercado R
    J Chem Inf Model; 2022 Oct; 62(20):4863-4872. PubMed ID: 36219571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape-Based Generative Modeling for de Novo Drug Design.
    Skalic M; Jiménez J; Sabbadin D; De Fabritiis G
    J Chem Inf Model; 2019 Mar; 59(3):1205-1214. PubMed ID: 30762364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of reinforcement learning in transformer-based molecular design.
    He J; Tibo A; Janet JP; Nittinger E; Tyrchan C; Czechtizky W; Engkvist O
    J Cheminform; 2024 Aug; 16(1):95. PubMed ID: 39118113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo molecular design with deep molecular generative models for PPI inhibitors.
    Wang J; Chu Y; Mao J; Jeon HN; Jin H; Zeb A; Jang Y; Cho KH; Song T; No KT
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35830870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LS-MolGen: Ligand-and-Structure Dual-Driven Deep Reinforcement Learning for Target-Specific Molecular Generation Improves Binding Affinity and Novelty.
    Li S; Hu C; Ke S; Yang C; Chen J; Xiong Y; Liu H; Hong L
    J Chem Inf Model; 2023 Jul; 63(13):4207-4215. PubMed ID: 37341350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of binding affinities in chemical space with generative pre-trained transformer and deep reinforcement learning.
    Xu X; Zhou J; Zhu C; Zhan Q; Li Z; Zhang R; Wang Y; Liao X; Gao X
    F1000Res; 2023; 12():757. PubMed ID: 38434657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.