BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34280872)

  • 1. Advances in optimizing enzyme electrostatic preorganization.
    Hennefarth MR; Alexandrova AN
    Curr Opin Struct Biol; 2022 Feb; 72():1-8. PubMed ID: 34280872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometry of Charge Density as a Reporter on the Role of the Protein Scaffold in Enzymatic Catalysis: Electrostatic Preorganization and Beyond.
    Eberhart ME; Wilson TR; Johnston NW; Alexandrova AN
    J Chem Theory Comput; 2023 Feb; 19(3):694-704. PubMed ID: 36562645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric Fields and Fast Protein Dynamics in Enzymes.
    Zoi I; Antoniou D; Schwartz SD
    J Phys Chem Lett; 2017 Dec; 8(24):6165-6170. PubMed ID: 29220191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ketosteroid isomerase provides further support for the idea that enzymes work by electrostatic preorganization.
    Kamerlin SC; Sharma PK; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4075-80. PubMed ID: 20150513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge Density in Enzyme Active Site as a Descriptor of Electrostatic Preorganization.
    Fuller J; Wilson TR; Eberhart ME; Alexandrova AN
    J Chem Inf Model; 2019 May; 59(5):2367-2373. PubMed ID: 30793899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the Transition State Stabilization/Destabilization Effects of the Electric Fields from Scaffold Residues by a QM/MM Approach.
    Yan S; Ji X; Peng W; Wang B
    J Phys Chem B; 2023 May; 127(19):4245-4253. PubMed ID: 37155960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric Fields and Enzyme Catalysis.
    Fried SD; Boxer SG
    Annu Rev Biochem; 2017 Jun; 86():387-415. PubMed ID: 28375745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Dynamics Support Electrostatic Interactions in the Active Site of Adenylate Kinase.
    Lawal MM; Vaissier Welborn V
    Chembiochem; 2022 May; 23(10):e202200097. PubMed ID: 35303385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatics as a Guiding Principle in Understanding and Designing Enzymes.
    Ruiz-Pernía JJ; Świderek K; Bertran J; Moliner V; Tuñón I
    J Chem Theory Comput; 2024 Mar; 20(5):1783-1795. PubMed ID: 38410913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulations of enzyme catalysis: methods, progress, and insights.
    Warshel A
    Annu Rev Biophys Biomol Struct; 2003; 32():425-43. PubMed ID: 12574064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA.
    Zheng Y; Vaissier Welborn V
    J Phys Chem B; 2022 May; 126(18):3407-3413. PubMed ID: 35483007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Electrostatics in Enzymes: Do Biomolecular Force Fields Reflect Protein Electric Fields?
    Bradshaw RT; Dziedzic J; Skylaris CK; Essex JW
    J Chem Inf Model; 2020 Jun; 60(6):3131-3144. PubMed ID: 32298113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new paradigm for electrostatic catalysis of radical reactions in vitamin B12 enzymes.
    Sharma PK; Chu ZT; Olsson MH; Warshel A
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9661-6. PubMed ID: 17517615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme electric fields power catalysis in the active site of ketosteroid isomerase.
    Fried SD; Bagchi S; Boxer SG
    Science; 2014 Dec; 346(6216):1510-4. PubMed ID: 25525245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Electric Fields: From Enzyme Catalysis to Synthetic Catalyst Design.
    Dubey KD; Stuyver T; Shaik S
    J Phys Chem B; 2022 Dec; 126(49):10285-10294. PubMed ID: 36469939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy.
    Völler JS; Biava H; Hildebrandt P; Budisa N
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3053-3059. PubMed ID: 28229928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Fields as a Tool to Analyze Enzyme Reaction Mechanism Variants and Reaction Steps.
    Kędzierski P; Moskal M; Sokalski WA
    J Phys Chem B; 2021 Oct; 125(42):11606-11616. PubMed ID: 34648705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
    Frushicheva MP; Cao J; Warshel A
    Biochemistry; 2011 May; 50(18):3849-58. PubMed ID: 21443179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The entropic contributions in vitamin B12 enzymes still reflect the electrostatic paradigm.
    Schopf P; Mills MJ; Warshel A
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4328-33. PubMed ID: 25805820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.