These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34280920)

  • 21. Prolonged low-level noise exposure reduces rat distortion product otoacoustic emissions above a critical level.
    Zhao DL; Sheppard A; Ralli M; Liu X; Salvi R
    Hear Res; 2018 Dec; 370():209-216. PubMed ID: 30146226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating noise induced hearing loss with distortion product otoacoustic emissions.
    Attias J; Bresloff I; Reshef I; Horowitz G; Furman V
    Br J Audiol; 1998 Feb; 32(1):39-46. PubMed ID: 9643306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of distortion product otoacoustic emissions in the estimation of hearing and sensory cell loss in noise-damaged cochleas.
    Davis B; Qiu W; Hamernik RP
    Hear Res; 2004 Jan; 187(1-2):12-24. PubMed ID: 14698083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Paradoxical long-term enhancement of distortion product otoacoustic emission amplitude after repeated exposure to moderate level, wide band noise in awake guinea pigs.
    Mei L; Huang ZW; Tao ZZ
    J Laryngol Otol; 2009 Oct; 123(10):1090-6. PubMed ID: 19607735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distortion-product emissions in rabbit: II. Prediction of chronic-noise effects by brief pure-tone exposures.
    Mensh BD; Lonsbury-Martin BL; Martin GK
    Hear Res; 1993 Oct; 70(1):65-72. PubMed ID: 8276733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: time course of recovery and effects of lowering L2.
    Sutton LA; Lonsbury-Martin BL; Martin GK; Whitehead ML
    Hear Res; 1994 May; 75(1-2):161-74. PubMed ID: 8071143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporary and permanent noise-induced changes in distortion product otoacoustic emissions in CBA/CaJ mice.
    Vázquez AE; Luebke AE; Martin GK; Lonsbury-Martin BL
    Hear Res; 2001 Jun; 156(1-2):31-43. PubMed ID: 11377880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potentiation of noise-induced hearing loss by amikacin in guinea pigs.
    Tan CT; Hsu CJ; Lee SY; Liu SH; Lin-Shiau SY
    Hear Res; 2001 Nov; 161(1-2):72-80. PubMed ID: 11744283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Distortion product otoacoustic emissions (DPOAE) in chronic noise-induced hearing loss--recommendations for expert assessment].
    Oeken I; Müller H
    Laryngorhinootologie; 1995 Aug; 74(8):473-80. PubMed ID: 7575898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears.
    Fernandez KA; Jeffers PW; Lall K; Liberman MC; Kujawa SG
    J Neurosci; 2015 May; 35(19):7509-20. PubMed ID: 25972177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of usage of personal music systems on oto-acoustic emissions among medical students.
    Narahari PG; Bhat J; Nambi A; Arora A
    Noise Health; 2017; 19(90):222-226. PubMed ID: 28937016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distortion product otoacoustic emissions show exceptional resistance to noise exposure in MOLF/Ei mice.
    Candreia C; Martin GK; Stagner BB; Lonsbury-Martin BL
    Hear Res; 2004 Aug; 194(1-2):109-17. PubMed ID: 15276682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of noise exposure during solitary trumpet playing: immediate impact on distortion-product otoacoustic emissions and long-term implications for hearing.
    Poissant SF; Freyman RL; MacDonald AJ; Nunes HA
    Ear Hear; 2012; 33(4):543-53. PubMed ID: 22531575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fine structure of distortion product otoacoustic emissions: its dependence on age and hearing threshold and clinical implications.
    Wagner W; Plinkert PK; Vonthein R; Plontke SK
    Eur Arch Otorhinolaryngol; 2008 Oct; 265(10):1165-72. PubMed ID: 18301908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal characteristics of the cochlear response after noise exposure.
    Li L; Liu X; Chen GD; Salvi R
    Hear Res; 2021 May; 404():108208. PubMed ID: 33640834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noise induced temporary otoacoustic emission shifts.
    Attias J; Bresloff I
    J Basic Clin Physiol Pharmacol; 1996; 7(3):221-33. PubMed ID: 8910138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distortion-product otoacoustic emission spectra and high-resolution audiometry in noise-induced hearing loss.
    Avan P; Bonfils P
    Hear Res; 2005 Nov; 209(1-2):68-75. PubMed ID: 16112827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling.
    Alagramam KN; Stepanyan R; Jamesdaniel S; Chen DH; Davis RR
    Noise Health; 2014; 16(73):400-9. PubMed ID: 25387536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activated protein C rescues the cochlea from noise-induced hearing loss.
    Kurioka T; Matsunobu T; Niwa K; Tamura A; Satoh Y; Shiotani A
    Brain Res; 2014 Oct; 1583():201-10. PubMed ID: 25108045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST; Gorga MP; Dorn PA
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.