BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34281077)

  • 1. Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose.
    Wu Y; Zhu J; Fu P; Tong W; Hong H; Chen M
    Int J Environ Res Public Health; 2021 Jul; 18(13):. PubMed ID: 34281077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States.
    Stepan AF; Walker DP; Bauman J; Price DA; Baillie TA; Kalgutkar AS; Aleo MD
    Chem Res Toxicol; 2011 Sep; 24(9):1345-410. PubMed ID: 21702456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts.
    Cui X; Liu J; Zhang J; Wu Q; Li X
    J Appl Toxicol; 2019 Aug; 39(8):1224-1232. PubMed ID: 31006880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Approach to Structural Alerts: Furans, Phenols, Nitroaromatics, and Thiophenes.
    Dang NL; Hughes TB; Miller GP; Swamidass SJ
    Chem Res Toxicol; 2017 Apr; 30(4):1046-1059. PubMed ID: 28256829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases.
    Guo H; Zhang P; Zhang R; Hua Y; Zhang P; Cui X; Huang X; Li X
    Front Immunol; 2022; 13():1015409. PubMed ID: 36353637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting toxicities of reactive metabolite-positive drug candidates.
    Kalgutkar AS; Dalvie D
    Annu Rev Pharmacol Toxicol; 2015; 55():35-54. PubMed ID: 25292426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Should the incorporation of structural alerts be restricted in drug design? An analysis of structure-toxicity trends with aniline-based drugs.
    Kalgutkar AS
    Curr Med Chem; 2015; 22(4):438-64. PubMed ID: 25388012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a Machine Learning System to Identify and Prevent Medication Prescribing Errors: A Clinical and Cost Analysis Evaluation.
    Rozenblum R; Rodriguez-Monguio R; Volk LA; Forsythe KJ; Myers S; McGurrin M; Williams DH; Bates DW; Schiff G; Seoane-Vazquez E
    Jt Comm J Qual Patient Saf; 2020 Jan; 46(1):3-10. PubMed ID: 31786147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the reactive metabolites of tyrosine kinase inhibitors in a comprehensive approach: Implications for drug-drug interactions and hepatotoxicity.
    Paludetto MN; Puisset F; Chatelut E; Arellano C
    Med Res Rev; 2019 Nov; 39(6):2105-2152. PubMed ID: 31111528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing drug prescription errors and adverse drug events by application of a probabilistic, machine-learning based clinical decision support system in an inpatient setting.
    Segal G; Segev A; Brom A; Lifshitz Y; Wasserstrum Y; Zimlichman E
    J Am Med Inform Assoc; 2019 Dec; 26(12):1560-1565. PubMed ID: 31390471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A perspective on the contribution of metabolites to drug-drug interaction potential: the need to consider both circulating levels and inhibition potency.
    Yu H; Tweedie D
    Drug Metab Dispos; 2013 Mar; 41(3):536-40. PubMed ID: 23143892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven identification of structural alerts for mitigating the risk of drug-induced human liver injuries.
    Liu R; Yu X; Wallqvist A
    J Cheminform; 2015; 7():4. PubMed ID: 25717346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of structural alerts to avoid the toxicity of pharmaceuticals.
    Limban C; Nuţă DC; Chiriţă C; Negreș S; Arsene AL; Goumenou M; Karakitsios SP; Tsatsakis AM; Sarigiannis DA
    Toxicol Rep; 2018; 5():943-953. PubMed ID: 30258789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing around Structural Alerts in Drug Discovery.
    Kalgutkar AS
    J Med Chem; 2020 Jun; 63(12):6276-6302. PubMed ID: 31497963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting ensemble learning to improve prediction of phospholipidosis inducing potential.
    Nath A; Sahu GK
    J Theor Biol; 2019 Oct; 479():37-47. PubMed ID: 31310757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Supervised Machine Learning to Classify Real Alerts and Artifact in Online Multisignal Vital Sign Monitoring Data.
    Chen L; Dubrawski A; Wang D; Fiterau M; Guillame-Bert M; Bose E; Kaynar AM; Wallace DJ; Guttendorf J; Clermont G; Pinsky MR; Hravnak M
    Crit Care Med; 2016 Jul; 44(7):e456-63. PubMed ID: 26992068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatotoxicity: a scheme for generating chemical categories for read-across, structural alerts and insights into mechanism(s) of action.
    Hewitt M; Enoch SJ; Madden JC; Przybylak KR; Cronin MT
    Crit Rev Toxicol; 2013 Aug; 43(7):537-58. PubMed ID: 23875763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Approaches to Identify Structural Alerts and Their Applications in Environmental Toxicology and Drug Discovery.
    Yang H; Lou C; Li W; Liu G; Tang Y
    Chem Res Toxicol; 2020 Jun; 33(6):1312-1322. PubMed ID: 32091207
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Yang H; Sun L; Li W; Liu G; Tang Y
    Front Chem; 2018; 6():30. PubMed ID: 29515993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs.
    Beaudoin M; Kabanza F; Nault V; Valiquette L
    Artif Intell Med; 2016 Mar; 68():29-36. PubMed ID: 26947174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.