These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34281658)

  • 1. Fungal tolerance to Congo red, a cell wall integrity stress, as a promising indicator of ecological niche.
    Lima DMCG; Costa TPC; Emri T; Pócsi I; Pupin B; Rangel DEN
    Fungal Biol; 2021 Aug; 125(8):646-657. PubMed ID: 34281658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotolerance as a determinant of microbial ecology: A study of phylogenetically diverse fungi.
    Araújo CAS; Ferreira PC; Pupin B; Dias LP; Avalos J; Edwards J; Hallsworth JE; Rangel DEN
    Fungal Biol; 2020 May; 124(5):273-288. PubMed ID: 32389289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red.
    Ram AF; Klis FM
    Nat Protoc; 2006; 1(5):2253-6. PubMed ID: 17406464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence.
    Zhang J; Jiang H; Du Y; Keyhani NO; Xia Y; Jin K
    PLoS Pathog; 2019 Aug; 15(8):e1007964. PubMed ID: 31461507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic diversity of stress signalling pathways in fungi.
    Nikolaou E; Agrafioti I; Stumpf M; Quinn J; Stansfield I; Brown AJ
    BMC Evol Biol; 2009 Feb; 9():44. PubMed ID: 19232129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Genomic and Biochemical Analysis Reveals Pleiotropic Effect of Congo Red on Aspergillus fumigatus.
    Liu Z; Raj S; van Rhijn N; Fraczek M; Michel JP; Sismeiro O; Legendre R; Varet H; Fontaine T; Bromley M; Latgé JP
    mBio; 2021 May; 12(3):. PubMed ID: 34006660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MaFKS, a β-1,3-glucan synthase, is involved in cell wall integrity, hyperosmotic pressure tolerance and conidiation in Metarhizium acridum.
    Yang M; Jin K; Xia Y
    Curr Genet; 2011 Aug; 57(4):253-60. PubMed ID: 21562714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature.
    García R; Botet J; Rodríguez-Peña JM; Bermejo C; Ribas JC; Revuelta JL; Nombela C; Arroyo J
    BMC Genomics; 2015 Sep; 16(1):683. PubMed ID: 26341223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species of the Metarhizium anisopliae complex with diverse ecological niches display different susceptibilities to antifungal agents.
    Brancini GTP; Tonani L; Rangel DEN; Roberts DW; Braga GUL
    Fungal Biol; 2018 Jun; 122(6):563-569. PubMed ID: 29801801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serendipity in the wrestle between Trichoderma and Metarhizium.
    Medina EQA; Oliveira AS; Medina HR; Rangel DEN
    Fungal Biol; 2020 May; 124(5):418-426. PubMed ID: 32389304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of entomopathogenic fungi to the mutagen 4-nitroquinoline 1-oxide.
    Araújo CAS; Dias LP; Ferreira PC; Mittmann J; Pupin B; Brancini GTP; Braga GÚL; Rangel DEN
    Fungal Biol; 2018 Jun; 122(6):621-628. PubMed ID: 29801807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcofluor white hypersensitive proteins contribute to stress tolerance and pathogenicity in entomopathogenic fungus, Metarhizium acridum.
    Su X; Yan X; Chen X; Guo M; Xia Y; Cao Y
    Pest Manag Sci; 2021 Apr; 77(4):1915-1924. PubMed ID: 33300230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum.
    Zhao T; Tian H; Xia Y; Jin K
    Curr Genet; 2019 Aug; 65(4):1025-1040. PubMed ID: 30911768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The multifunctional lifestyles of Metarhizium: evolution and applications.
    Stone LBL; Bidochka MJ
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):9935-9945. PubMed ID: 33085023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na(+)-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance.
    Ma Q; Jin K; Peng G; Xia Y
    Fungal Genet Biol; 2015 Oct; 83():68-77. PubMed ID: 26325214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Xenon Test Chamber Q-SUN
    Dias LP; Araújo CAS; Pupin B; Ferreira PC; Braga GÚL; Rangel DEN
    Fungal Biol; 2018 Jun; 122(6):592-601. PubMed ID: 29801804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights from the genome of Ophiocordyceps polyrhachis-furcata to pathogenicity and host specificity in insect fungi.
    Wichadakul D; Kobmoo N; Ingsriswang S; Tangphatsornruang S; Chantasingh D; Luangsa-ard JJ; Eurwilaichitr L
    BMC Genomics; 2015 Oct; 16():881. PubMed ID: 26511477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress.
    Azevedo RF; Souza RK; Braga GU; Rangel DE
    Fungal Biol; 2014 Dec; 118(12):990-5. PubMed ID: 25457946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum.
    Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.