These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34281798)

  • 61. Applying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions.
    Fenton A; Perkins SE
    Parasitology; 2010 May; 137(6):1027-38. PubMed ID: 20152061
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Density-dependent effects of multiple predators sharing a common prey in an endophytic habitat.
    Aukema BH; Clayton MK; Raffa KF
    Oecologia; 2004 May; 139(3):418-26. PubMed ID: 14968356
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fighting parasites and predators: how to deal with multiple threats?
    Hesse O; Engelbrecht W; Laforsch C; Wolinska J
    BMC Ecol; 2012 Jul; 12():12. PubMed ID: 22827857
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Parasite evolution of host manipulation strategies with fluctuating ecological dynamics.
    Oliver MG; Best A
    J Evol Biol; 2024 Mar; 37(3):302-313. PubMed ID: 38300519
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects.
    Klecka J; Boukal DS
    PLoS One; 2012; 7(6):e37741. PubMed ID: 22679487
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Manipulative parasites may not alter intermediate host distribution but still enhance their transmission: field evidence for increased vulnerability to definitive hosts and non-host predator avoidance.
    Lagrue C; Güvenatam A; Bollache L
    Parasitology; 2013 Feb; 140(2):258-65. PubMed ID: 23068018
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evolution of Host Defense against Multiple Enemy Populations.
    Toor J; Best A
    Am Nat; 2016 Mar; 187(3):308-19. PubMed ID: 26913944
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The influence of size-specific indirect interactions in predator-prey systems.
    Rudolf VH
    Ecology; 2006 Feb; 87(2):362-71. PubMed ID: 16637362
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Do herbivore-induced plant volatiles influence predator migration and local dynamics of herbivorous and predatory mites?
    Pels B; Sabelis MW
    Exp Appl Acarol; 2000; 24(5-6):427-40. PubMed ID: 11156167
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Implications of increased susceptibility to predation for managing the sylvatic cycle of Echinococcus multilocularis.
    Vervaeke M; Davis S; Leirs H; Verhagen R
    Parasitology; 2006 Jun; 132(Pt 6):893-901. PubMed ID: 16454866
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Predation, individual variability and vertebrate population dynamics.
    Pettorelli N; Coulson T; Durant SM; Gaillard JM
    Oecologia; 2011 Oct; 167(2):305-14. PubMed ID: 21761171
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Competition and Facilitation between a Disease and a Predator in a Stunted Prey Population.
    Boerlijst MC; de Roos AM
    PLoS One; 2015; 10(7):e0132251. PubMed ID: 26147293
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Predators, parasitoids, and pathogens: a cross-cutting examination of intraguild predation theory.
    Borer ET; Briggs CJ; Holt RD
    Ecology; 2007 Nov; 88(11):2681-8. PubMed ID: 18051634
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Trophic ecology, behaviour and host population dynamics in Echinococcus multilocularis transmission.
    Raoul F; Hegglin D; Giraudoux P
    Vet Parasitol; 2015 Oct; 213(3-4):162-71. PubMed ID: 26276578
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multi-trophic native and non-native prey naïveté shape marine invasion success.
    Papacostas KJ; Freestone AL
    PLoS One; 2019; 14(9):e0221969. PubMed ID: 31490995
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system.
    Hauzy C; Hulot FD; Gins A; Loreau M
    J Anim Ecol; 2007 May; 76(3):552-8. PubMed ID: 17439471
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites.
    Auld SK; Hall SR; Housley Ochs J; Sebastian M; Duffy MA
    Am Nat; 2014 Aug; 184 Suppl 1():S77-90. PubMed ID: 25061679
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced recruitment of larger predators in the presence of large prey.
    Takatsu K; Kishida O
    J Anim Ecol; 2020 Jul; 89(7):1615-1627. PubMed ID: 32176809
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The enemy of my enemy is my friend: Consumption of parasite infectious stages benefits hosts and predators depending on transmission mode.
    Koprivnikar J
    J Anim Ecol; 2022 Jan; 91(1):4-7. PubMed ID: 35014041
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Free-living parasite infectious stages promote zooplankton abundance under the risk of predation.
    Schultz B; Koprivnikar J
    Oecologia; 2019 Oct; 191(2):411-420. PubMed ID: 31501977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.