These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 3428191)

  • 41. [Autoradiographic investigations on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special references to the olfactory organ (author's transl)].
    Richter W; Kranz D
    Z Mikrosk Anat Forsch; 1981; 95(6):883-904. PubMed ID: 7336815
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Tale-Tell Heart: Evolutionary tetrapod shift from aquatic to terrestrial life-style reflected in heart changes in axolotl (Ambystoma mexicanum).
    Olejnickova V; Kolesova H; Bartos M; Sedmera D; Gregorovicova M
    Dev Dyn; 2022 Jun; 251(6):1004-1014. PubMed ID: 34423892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of an ultraviolet photoreception mechanism in the retina of an amphibian, the axolotl (Ambystoma mexicanum).
    Deutschlander ME; Phillips JB
    Neurosci Lett; 1995 Sep; 197(2):93-6. PubMed ID: 8552288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains.
    Ngamukote S; Yanagisawa M; Ariga T; Ando S; Yu RK
    J Neurochem; 2007 Dec; 103(6):2327-41. PubMed ID: 17883393
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: differences in cell morphology, arrangement, and extracellular matrix as related to migration.
    Spieth J; Keller RE
    J Exp Zool; 1984 Jan; 229(1):91-107. PubMed ID: 6699590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1984 Jun; 81():105-25. PubMed ID: 6470605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Morphodynamics of the epidermis of axolotl (Sideron mexicanum Shaw) under the influence of exogenously administered thyroxine. II. Epidermis during metamorphosis].
    Fährmann W
    Z Mikrosk Anat Forsch; 1971; 83(4):535-68. PubMed ID: 5166123
    [No Abstract]   [Full Text] [Related]  

  • 48. A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl.
    Demircan T; İlhan AE; Aytürk N; Yıldırım B; Öztürk G; Keskin İ
    Acta Histochem; 2016 Sep; 118(7):746-759. PubMed ID: 27436816
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fiber counts of regenerating peripheral nerves in axolotls and the effect of metamorphosis.
    Ehrlich D; Mark RF
    J Comp Neurol; 1977 Jul; 174(2):307-16. PubMed ID: 864039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The patterns of brain gangliosides of Rana catesbeiana during metamorphosis and in the adult.
    Yates AJ; McGill JM; Markowitz DL; Tassava RA
    Dev Biol; 1985 Jul; 110(1):255-8. PubMed ID: 3874103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thyroxine-induced activation of hypothalamo-hypophysial axis in neotenic salamander larvae.
    Norris DO; Gern WA
    Science; 1976 Oct; 194(4264):525-7. PubMed ID: 973134
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Retinoic acid treatment inhibits mitosis in the pre-existing spinal cord during tail regeneration of the axolotl larva, Ambystoma mexicanum.
    Pietsch P
    Cytobios; 1993; 76(304):7-11. PubMed ID: 8243113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in the concentration and composition of human brain gangliosides with aging.
    Segler-Stahl K; Webster JC; Brunngraber EG
    Gerontology; 1983; 29(3):161-8. PubMed ID: 6852543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experiments on developing limb buds of the axolotl Ambystoma mexicanum.
    Maden M; Goodwin BC
    J Embryol Exp Morphol; 1980 Jun; 57():177-87. PubMed ID: 7430928
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity.
    Monaghan JR; Stier AC; Michonneau F; Smith MD; Pasch B; Maden M; Seifert AW
    Regeneration (Oxf); 2014 Feb; 1(1):2-14. PubMed ID: 27499857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adenohypophysial-thyroid activity of the tiger salamander, Ambystoma tigrinum, as a function of metamorphosis and captivity.
    Norman MF; Carr JA; Norris DO
    J Exp Zool; 1987 Apr; 242(1):55-66. PubMed ID: 3598513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of interrenal secretion in the axolotl, Ambystoma mexicanum.
    Gupta OP; Hanke W
    Exp Clin Endocrinol; 1994; 102(4):299-306. PubMed ID: 7813601
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calmodulin during development and metamorphosis in urodelan amphibians.
    Weinman JS; Gallien CL; Rainteau DP; Guyot M; Weinman SJ; Demaille JG
    Dev Biol; 1984 Jan; 101(1):73-85. PubMed ID: 6537929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: time-lapse cinemicrographic analysis of pigment cell movement in vivo and in culture.
    Keller RE; Spieth J
    J Exp Zool; 1984 Jan; 229(1):109-26. PubMed ID: 6699589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved techniques for use of the triploid cell marker in the axolotl, Ambystoma mexicanum.
    Muneoka K; Wise LD; Fox WF; Bryant SV
    Dev Biol; 1984 Sep; 105(1):240-5. PubMed ID: 6205921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.