These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34282036)

  • 1. Mechanistic Study of Drying Phenomena of Highly Concentrated Protein Therapeutics-Drying Kinetics and Protein Aggregation.
    Allmendinger A; Ni Y; Bernhard A; Nalenz H
    PDA J Pharm Sci Technol; 2022; 76(1):52-64. PubMed ID: 34282036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filling of High-Concentration Monoclonal Antibody Formulations into Pre-filled Syringes: Investigating Formulation-Nozzle Interactions To Minimize Nozzle Clogging.
    Shieu W; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(3):417-26. PubMed ID: 26048747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filling of high-concentration monoclonal antibody formulations into pre-filled syringes: filling parameter investigation and optimization.
    Shieu W; Torhan SA; Chan E; Hubbard A; Gikanga B; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2014; 68(2):153-63. PubMed ID: 24668602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Sensor Concepts for 100% In-Process Control of Low-Volume Aseptic Fill-Finish Processes.
    Dreckmann T; Aipperspach W; Pfleghar K; TrÖndle J; Ernst A; Huwyler J; Ludwig IS; Luemkemann J
    PDA J Pharm Sci Technol; 2020; 74(6):660-673. PubMed ID: 32675305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating and Addressing Challenges Associated with Filling Protein Drug Products.
    Pardeshi N; Marsiglio D; Padmakumar V; Bernacki J; Rathore N
    J Pharm Sci; 2023 Apr; 112(4):954-962. PubMed ID: 36442684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filling of High-Concentration Monoclonal Antibody Formulations: Investigating Underlying Mechanisms That Affect Precision of Low-Volume Fill by Peristaltic Pump.
    Shieu W; Lamar D; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2016; 70(2):143-56. PubMed ID: 26797970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low volume aseptic filling: Impact of pump systems on shear stress.
    Dreckmann T; Boeuf J; Ludwig IS; Lümkemann J; Huwyler J
    Eur J Pharm Biopharm; 2020 Feb; 147():10-18. PubMed ID: 31837391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Processes for Freeze-Drying in Dual-Chamber Systems.
    Werk T; Ludwig IS; Luemkemann J; Huwyler J; Mahler HC; Haeuser CR; Hafner M
    PDA J Pharm Sci Technol; 2016; 70(3):191-207. PubMed ID: 26865679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapor Phase Hydrogen Peroxide Decontamination or Sanitization of an Isolator for Aseptic Filling of Monoclonal Antibody Drug Product-Hydrogen Peroxide Uptake and Impact on Protein Quality.
    Hubbard A; Roedl T; Hui A; Knueppel S; Eppler K; Lehnert S; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(4):348-366. PubMed ID: 29545321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Volume Aseptic Filling Using a Linear Peristaltic Pump.
    Dreckmann T; Ludwig IS; Luemkemann J; Huwyler J
    PDA J Pharm Sci Technol; 2021; 75(3):245-257. PubMed ID: 33067332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein formulation and fill-finish operations.
    Patro SY; Freund E; Chang BS
    Biotechnol Annu Rev; 2002; 8():55-84. PubMed ID: 12436915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.
    Nayak A; Colandene J; Bradford V; Perkins M
    J Pharm Sci; 2011 Oct; 100(10):4198-204. PubMed ID: 21698601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-Drying Above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency.
    Depaz RA; Pansare S; Patel SM
    J Pharm Sci; 2016 Jan; 105(1):40-9. PubMed ID: 26580140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filling Unit Operation for Biological Drug Products: Challenges and Considerations.
    Adler M; Allmendinger A
    J Pharm Sci; 2024 Feb; 113(2):332-344. PubMed ID: 37992868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of drying method and formulation on the physical properties and stability of methionyl human growth hormone in the amorphous solid state.
    Abdul-Fattah AM; Lechuga-Ballesteros D; Kalonia DS; Pikal MJ
    J Pharm Sci; 2008 Jan; 97(1):163-84. PubMed ID: 17722086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.