BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34282050)

  • 1. Functional annotation of noncoding mutations in cancer.
    Umer HM; Smolinska K; Komorowski J; Wadelius C
    Life Sci Alliance; 2021 Sep; 4(9):. PubMed ID: 34282050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OncoBase: a platform for decoding regulatory somatic mutations in human cancers.
    Li X; Shi L; Wang Y; Zhong J; Zhao X; Teng H; Shi X; Yang H; Ruan S; Li M; Sun ZS; Zhan Q; Mao F
    Nucleic Acids Res; 2019 Jan; 47(D1):D1044-D1055. PubMed ID: 30445567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations.
    Lochovsky L; Zhang J; Fu Y; Khurana E; Gerstein M
    Nucleic Acids Res; 2015 Sep; 43(17):8123-34. PubMed ID: 26304545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription Factors Involved in Tumorigenesis Are Over-Represented in Mutated Active DNA-Binding Sites in Neuroblastoma.
    Capasso M; Lasorsa VA; Cimmino F; Avitabile M; Cantalupo S; Montella A; De Angelis B; Morini M; de Torres C; Castellano A; Locatelli F; Iolascon A
    Cancer Res; 2020 Feb; 80(3):382-393. PubMed ID: 31784426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of noncoding regulatory mutations in cancer.
    Weinhold N; Jacobsen A; Schultz N; Sander C; Lee W
    Nat Genet; 2014 Nov; 46(11):1160-5. PubMed ID: 25261935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.
    Mathelier A; Lefebvre C; Zhang AW; Arenillas DJ; Ding J; Wasserman WW; Shah SP
    Genome Biol; 2015 Apr; 16(1):84. PubMed ID: 25903198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The search for cis-regulatory driver mutations in cancer genomes.
    Poulos RC; Sloane MA; Hesson LB; Wong JW
    Oncotarget; 2015 Oct; 6(32):32509-25. PubMed ID: 26356674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models.
    Svetlichnyy D; Imrichova H; Fiers M; Kalender Atak Z; Aerts S
    PLoS Comput Biol; 2015 Nov; 11(11):e1004590. PubMed ID: 26562774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent somatic mutations in regulatory regions of human cancer genomes.
    Melton C; Reuter JA; Spacek DV; Snyder M
    Nat Genet; 2015 Jul; 47(7):710-6. PubMed ID: 26053494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic synonymous mutations in regulatory elements contribute to the genetic aetiology of melanoma.
    Zhang D; Xia J
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):43. PubMed ID: 32241263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenomic annotation of noncoding mutations identifies mutated pathways in primary liver cancer.
    Lowdon RF; Wang T
    PLoS One; 2017; 12(3):e0174032. PubMed ID: 28333948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Significant Regulatory Mutation Burden at a High-Affinity Position of the CTCF Motif in Gastrointestinal Cancers.
    Umer HM; Cavalli M; Dabrowski MJ; Diamanti K; Kruczyk M; Pan G; Komorowski J; Wadelius C
    Hum Mutat; 2016 Sep; 37(9):904-13. PubMed ID: 27174533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks.
    Kalender Atak Z; Imrichova H; Svetlichnyy D; Hulselmans G; Christiaens V; Reumers J; Ceulemans H; Aerts S
    Genome Med; 2017 Aug; 9(1):80. PubMed ID: 28854983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer somatic mutations cluster in a subset of regulatory sites predicted from the ENCODE data.
    Shar NA; Vijayabaskar MS; Westhead DR
    Mol Cancer; 2016 Nov; 15(1):76. PubMed ID: 27887606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia.
    Huang D; Ovcharenko I
    BMC Genomics; 2017 Mar; 18(1):236. PubMed ID: 28302063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks.
    Zhu H; Uusküla-Reimand L; Isaev K; Wadi L; Alizada A; Shuai S; Huang V; Aduluso-Nwaobasi D; Paczkowska M; Abd-Rabbo D; Ocsenas O; Liang M; Thompson JD; Li Y; Ruan L; Krassowski M; Dzneladze I; Simpson JT; Lupien M; Stein LD; Boutros PC; Wilson MD; Reimand J
    Mol Cell; 2020 Mar; 77(6):1307-1321.e10. PubMed ID: 31954095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pan-cancer analysis of somatic mutations in miRNA genes.
    Urbanek-Trzeciak MO; Galka-Marciniak P; Nawrocka PM; Kowal E; Szwec S; Giefing M; Kozlowski P
    EBioMedicine; 2020 Nov; 61():103051. PubMed ID: 33038763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic associations of breast and prostate cancer are enriched for regulatory elements identified in disease-related tissues.
    Chen H; Kichaev G; Bien SA; MacDonald JW; Wang L; Bammler TK; Auer P; Pasaniuc B; Lindström S
    Hum Genet; 2019 Oct; 138(10):1091-1104. PubMed ID: 31230194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.