BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34282312)

  • 1. Van der Waals heterostructures for spintronics and opto-spintronics.
    Sierra JF; Fabian J; Kawakami RK; Roche S; Valenzuela SO
    Nat Nanotechnol; 2021 Aug; 16(8):856-868. PubMed ID: 34282312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Proximity Effect in Graphene/CrBr
    Tang C; Zhang Z; Lai S; Tan Q; Gao WB
    Adv Mater; 2020 Apr; 32(16):e1908498. PubMed ID: 32130750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric magnetic proximity interactions in MoSe
    Choi J; Lane C; Zhu JX; Crooker SA
    Nat Mater; 2023 Mar; 22(3):305-310. PubMed ID: 36536140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures.
    Choi EM; Sim KI; Burch KS; Lee YH
    Adv Sci (Weinh); 2022 Jul; 9(21):e2200186. PubMed ID: 35596612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast dynamics in van der Waals heterostructures.
    Jin C; Ma EY; Karni O; Regan EC; Wang F; Heinz TF
    Nat Nanotechnol; 2018 Nov; 13(11):994-1003. PubMed ID: 30397296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swapping Exchange and Spin-Orbit Coupling in 2D van der Waals Heterostructures.
    Zollner K; Gmitra M; Fabian J
    Phys Rev Lett; 2020 Nov; 125(19):196402. PubMed ID: 33216603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large Proximity-Induced Spin Lifetime Anisotropy in Transition-Metal Dichalcogenide/Graphene Heterostructures.
    Ghiasi TS; Ingla-Aynés J; Kaverzin AA; van Wees BJ
    Nano Lett; 2017 Dec; 17(12):7528-7532. PubMed ID: 29172543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological Magnetic-Spin Textures in Two-Dimensional van der Waals Cr
    Han MG; Garlow JA; Liu Y; Zhang H; Li J; DiMarzio D; Knight MW; Petrovic C; Jariwala D; Zhu Y
    Nano Lett; 2019 Nov; 19(11):7859-7865. PubMed ID: 31661617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Exchange Field Modulation of Quantum Hall Ferromagnetism in 2D van der Waals CrCl
    Wu Y; Cui Q; Zhu M; Liu X; Wang Y; Zhang J; Zheng X; Shen J; Cui P; Yang H; Wang S
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10656-10663. PubMed ID: 33595292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Controlled Ultrafast Magnetic State Transition in Antiferromagnetic-Ferromagnetic van der Waals Heterostructures.
    Li S; Zhou L; Frauenheim T; He J
    J Phys Chem Lett; 2022 Jul; 13(26):6223-6229. PubMed ID: 35770897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-Orbit Torque in Van der Waals-Layered Materials and Heterostructures.
    Tang W; Liu H; Li Z; Pan A; Zeng YJ
    Adv Sci (Weinh); 2021 Sep; 8(18):e2100847. PubMed ID: 34323390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximity-Induced Tunable Magnetic Order at the Interface of All-van der Waals-Layered Heterostructures.
    Choi EM; Kim T; Cho BW; Lee YH
    ACS Nano; 2023 Aug; 17(16):15656-15665. PubMed ID: 37523780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Area Synthesis of Ferromagnetic Fe
    Lv H; da Silva A; Figueroa AI; Guillemard C; Aguirre IF; Camosi L; Aballe L; Valvidares M; Valenzuela SO; Schubert J; Schmidbauer M; Herfort J; Hanke M; Trampert A; Engel-Herbert R; Ramsteiner M; Lopes JMJ
    Small; 2023 Sep; 19(39):e2302387. PubMed ID: 37231567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoironing van der Waals Heterostructures toward Electrically Controlled Quantum Dots.
    Talha-Dean T; Tarn Y; Mukherjee S; John JW; Huang D; Verzhbitskiy IA; Venkatakrishnarao D; Das S; Lee R; Mishra A; Wang S; Ang YS; Johnson Goh KE; Lau CS
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31738-31746. PubMed ID: 38843175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Graphene Spin Polarized Electrode for Magnetic Tunnel Junctions.
    Zatko V; Galceran R; Galbiati M; Peiro J; Godel F; Kern LM; Perconte D; Ibrahim F; Hallal A; Chshiev M; Martinez B; Frontera C; Balcells L; Kidambi PR; Robertson J; Hofmann S; Collin S; Petroff F; Martin MB; Dlubak B; Seneor P
    Nano Lett; 2023 Jan; 23(1):34-41. PubMed ID: 36535029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics.
    Zhong D; Seyler KL; Linpeng X; Cheng R; Sivadas N; Huang B; Schmidgall E; Taniguchi T; Watanabe K; McGuire MA; Yao W; Xiao D; Fu KC; Xu X
    Sci Adv; 2017 May; 3(5):e1603113. PubMed ID: 28580423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain Switching in van der Waals Heterostructures Triggered by a Spin-Crossover Metal-Organic Framework.
    Boix-Constant C; García-López V; Navarro-Moratalla E; Clemente-León M; Zafra JL; Casado J; Guinea F; Mañas-Valero S; Coronado E
    Adv Mater; 2022 Mar; 34(11):e2110027. PubMed ID: 35032055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exchange Bias Between van der Waals Materials: Tilted Magnetic States and Field-Free Spin-Orbit-Torque Switching.
    Cham TMJ; Dorrian RJ; Zhang XS; Dismukes AH; Chica DG; May AF; Roy X; Muller DA; Ralph DC; Luo YK
    Adv Mater; 2024 Mar; 36(13):e2305739. PubMed ID: 37800466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-Dependent Transport at 2D Solids: From Nonmagnetic Layers to Ferromagnetic van der Waals Structures.
    Liu Y; Guo Y; Wu C; Xie Y
    J Phys Chem Lett; 2021 Oct; 12(39):9730-9740. PubMed ID: 34590853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Synthesis of a Two-Dimensional Non-van der Waals Ferromagnet toward a Magnetic Moiré Superlattice.
    Jin Z; Ji Z; Zhong Y; Jin Y; Hu X; Zhang X; Zhu L; Huang X; Li T; Cai X; Zhou L
    ACS Nano; 2022 May; 16(5):7572-7579. PubMed ID: 35443128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.