These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3428246)

  • 1. Low temperature X-ray investigation of structural distributions in myoglobin.
    Parak F; Hartmann H; Aumann KD; Reuscher H; Rennekamp G; Bartunik H; Steigemann W
    Eur Biophys J; 1987; 15(4):237-49. PubMed ID: 3428246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K.
    Hartmann H; Parak F; Steigemann W; Petsko GA; Ponzi DR; Frauenfelder H
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4967-71. PubMed ID: 6956905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A water network within a protein: temperature-dependent water ligation in H64V-metmyoglobin and relaxation to deoxymyoglobin.
    Engler N; Prusakov V; Ostermann A; Parak FG
    Eur Biophys J; 2003 Feb; 31(8):595-607. PubMed ID: 12582819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural disorder in proteins. A comparison of myoglobin and erythrocruorin.
    Hartmann H; Steigemann W; Reuscher H; Parak F
    Eur Biophys J; 1987; 14(6):337-48. PubMed ID: 3595543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein dynamics of a beta-sheet protein.
    Schmidt M; Achterhold K; Prusakov V; Parak FG
    Eur Biophys J; 2009 Jun; 38(5):687-700. PubMed ID: 19271215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of the structure and dynamics of myoglobin. A simulation approach.
    Kuczera K; Kuriyan J; Karplus M
    J Mol Biol; 1990 May; 213(2):351-73. PubMed ID: 2342112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal expansion of a protein.
    Frauenfelder H; Hartmann H; Karplus M; Kuntz ID; Kuriyan J; Parak F; Petsko GA; Ringe D; Tilton RF; Connolly ML
    Biochemistry; 1987 Jan; 26(1):254-61. PubMed ID: 3828301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mössbauer spectroscopy on nonequilibrium states of myoglobin: a study of r-t relaxation.
    Prusakov VE; Steyer J; Parak FG
    Biophys J; 1995 Jun; 68(6):2524-30. PubMed ID: 7647255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dynamics of liganded myoglobin.
    Frauenfelder H; Petsko GA
    Biophys J; 1980 Oct; 32(1):465-83. PubMed ID: 7248456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 A.
    Tilton RF; Kuntz ID; Petsko GA
    Biochemistry; 1984 Jun; 23(13):2849-57. PubMed ID: 6466620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics.
    Frauenfelder H; Petsko GA; Tsernoglou D
    Nature; 1979 Aug; 280(5723):558-63. PubMed ID: 460437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The X-ray absorption spectroscopy Debye-Waller factors of an iron compound and of met-myoglobin as a function of temperature.
    Scherk CG; Ostermann A; Achterhold K; Iakovleva O; Nazikkol C; Krebs B; Knapp EW; Meyer-Klaucke W; Parak FG
    Eur Biophys J; 2001 Oct; 30(6):393-403. PubMed ID: 11718291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of large intramolecular movement within metmyoglobin by Rayleigh scattering of Mössbauer radiation (RSMR).
    Krupyanskii YuF ; Parak F; Goldanskii VI; Mössbauer RL; Gaubman EE; Engelmann H; Suzdalev IP
    Z Naturforsch C Biosci; 1982; 37(1-2):57-62. PubMed ID: 7064510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High and low spin state mixture in methemoglobin and metmyoglobin.
    Wajnberg E; Kalinowski HJ; Bemski G
    An Acad Bras Cienc; 1985 Mar; 57(1):15-7. PubMed ID: 2998248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horse heart metmyoglobin. A 2.8-A resolution three-dimensional structure determination.
    Evans SV; Brayer GD
    J Biol Chem; 1988 Mar; 263(9):4263-8. PubMed ID: 3346247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics.
    Kuriyan J; Petsko GA; Levy RM; Karplus M
    J Mol Biol; 1986 Jul; 190(2):227-54. PubMed ID: 3795269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution X-ray structures of pig metmyoglobin and two CD3 mutants: Mb(Lys45----Arg) and Mb(Lys45----Ser).
    Oldfield TJ; Smerdon SJ; Dauter Z; Petratos K; Wilson KS; Wilkinson AJ
    Biochemistry; 1992 Sep; 31(37):8732-9. PubMed ID: 1390659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. XANES of carboxy and cyanomet-myoglobin. The role of the distal histidine in the bent Fe-C-O configuration.
    Bianconi A; Congiu-Castellano A; Giovannelli A; Dell'Ariccia M; Burattini E; Durham PJ; Giacometti GM
    Eur Biophys J; 1986; 14(1):7-10. PubMed ID: 3816700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 A resolution.
    Kuriyan J; Wilz S; Karplus M; Petsko GA
    J Mol Biol; 1986 Nov; 192(1):133-54. PubMed ID: 3820301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.