These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 34282494)

  • 21. Immunomodulatory Biomaterials and Emerging Analytical Techniques for Probing the Immune Micro-Environment.
    Bian N; Chu C; Rung S; Huangphattarakul V; Man Y; Lin J; Hu C
    Tissue Eng Regen Med; 2023 Feb; 20(1):11-24. PubMed ID: 36241939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scaffold vascularization: a challenge for three-dimensional tissue engineering.
    Bramfeldt H; Sabra G; Centis V; Vermette P
    Curr Med Chem; 2010; 17(33):3944-67. PubMed ID: 20939827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering.
    Li Y; Xu Z; Wang J; Pei X; Chen J; Wan Q
    Int J Biol Macromol; 2023 Mar; 230():123246. PubMed ID: 36649862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation.
    Landau S; Szklanny AA; Yeo GC; Shandalov Y; Kosobrodova E; Weiss AS; Levenberg S
    Biomaterials; 2017 Apr; 122():72-82. PubMed ID: 28110114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pivotal role of vascularization in tissue engineering.
    Auger FA; Gibot L; Lacroix D
    Annu Rev Biomed Eng; 2013; 15():177-200. PubMed ID: 23642245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds.
    Rnjak-Kovacina J; Gerrand YW; Wray LS; Tan B; Joukhdar H; Kaplan DL; Morrison WA; Mitchell GM
    Adv Healthc Mater; 2019 Dec; 8(24):e1901106. PubMed ID: 31714024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Angiogenesis with biomaterial-based drug- and cell-delivery systems.
    Patel ZS; Mikos AG
    J Biomater Sci Polym Ed; 2004; 15(6):701-26. PubMed ID: 15255521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine.
    Brown BN; Ratner BD; Goodman SB; Amar S; Badylak SF
    Biomaterials; 2012 May; 33(15):3792-802. PubMed ID: 22386919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced vascularization and biocompatibility of rat pancreatic decellularized scaffolds loaded with platelet-rich plasma.
    Zhang L; Qiu H; Wang D; Miao H; Zhu Y; Guo Q; Guo Y; Wang Z
    J Biomater Appl; 2020 Sep; 35(3):313-330. PubMed ID: 32567485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen-Generating Biomaterials: A New, Viable Paradigm for Tissue Engineering?
    Gholipourmalekabadi M; Zhao S; Harrison BS; Mozafari M; Seifalian AM
    Trends Biotechnol; 2016 Dec; 34(12):1010-1021. PubMed ID: 27325423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immuno-Informed 3D Silk Biomaterials for Tailoring Biological Responses.
    Kumar M; Coburn J; Kaplan DL; Mandal BB
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29310-29322. PubMed ID: 27726371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vascularization strategies of engineered tissues and their application in cardiac regeneration.
    Sun X; Altalhi W; Nunes SS
    Adv Drug Deliv Rev; 2016 Jan; 96():183-94. PubMed ID: 26056716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro response of macrophage polarization to a keratin biomaterial.
    Fearing BV; Van Dyke ME
    Acta Biomater; 2014 Jul; 10(7):3136-44. PubMed ID: 24726958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Keratin biomaterials augment anti-inflammatory macrophage phenotype in vitro.
    Waters M; VandeVord P; Van Dyke M
    Acta Biomater; 2018 Jan; 66():213-223. PubMed ID: 29107632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials.
    Brown BN; Londono R; Tottey S; Zhang L; Kukla KA; Wolf MT; Daly KA; Reing JE; Badylak SF
    Acta Biomater; 2012 Mar; 8(3):978-87. PubMed ID: 22166681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Chitosan/Agarose/NanoHA Bone Scaffold-Induced M2 Macrophage Polarization and Its Effect on Osteogenic Differentiation In Vitro.
    Kazimierczak P; Koziol M; Przekora A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering.
    Wissing TB; van Haaften EE; Koch SE; Ippel BD; Kurniawan NA; Bouten CVC; Smits AIPM
    Biomater Sci; 2019 Dec; 8(1):132-147. PubMed ID: 31709425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of macrophage phenotype in vascularization of tissue engineering scaffolds.
    Spiller KL; Anfang RR; Spiller KJ; Ng J; Nakazawa KR; Daulton JW; Vunjak-Novakovic G
    Biomaterials; 2014 May; 35(15):4477-88. PubMed ID: 24589361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration.
    Ding T; Kang W; Li J; Yu L; Ge S
    J Nanobiotechnology; 2021 Aug; 19(1):247. PubMed ID: 34404409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration.
    Lee J; Byun H; Madhurakkat Perikamana SK; Lee S; Shin H
    Adv Healthc Mater; 2019 Feb; 8(4):e1801106. PubMed ID: 30328293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.