BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34282500)

  • 1. Secondary Packages cannot Protect Liquid Biopharmaceutical Formulations from Dropping-Induced Degradation.
    Fang WJ; Liu JW; Gao H; Qian YC; Gao JQ; Wang H
    Pharm Res; 2021 Aug; 38(8):1397-1404. PubMed ID: 34282500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Secondary Package on Freeze-Dried Biopharmaceutical Formulation Stability During Dropping.
    Fang WJ; Liu JW; Barnard J; Wang H; Qian YC; Xu J
    J Pharm Sci; 2021 Aug; 110(8):2916-2924. PubMed ID: 33940028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-Dried Biopharmaceutical Formulations are Surprisingly Less Stable than Liquid Formulations during Dropping.
    Fang WJ; Pang MJ; Liu JW; Wang X; Wang H; Sun MF
    Pharm Res; 2022 Apr; 39(4):795-803. PubMed ID: 35314998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Sub-Visible Particle and Free Radical formation of a Freeze-Dried Monoclonal Antibody Formulation During Dropping.
    Fang WJ; Liu JW; Zheng HJ; Shen BB; Wang X; Kong Y; Jing ZY; Gao JQ
    J Pharm Sci; 2021 Apr; 110(4):1625-1634. PubMed ID: 33049261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-Dried Monoclonal Antibody Formulations are Unexpectedly More Prone to Degradation Than Liquid Formulations Under Shaking Stress.
    Fang WJ; Ingle RG; Liu JW; Ge XZ; Wang H
    J Pharm Sci; 2022 Jul; 111(7):2134-2138. PubMed ID: 35257695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effects of Excipients on Freeze-dried Monoclonal Antibody Formulation Degradation and Sub-Visible Particle Formation during Shaking.
    Jin MJ; Ge XZ; Huang Q; Liu JW; Ingle RG; Gao D; Fang WJ
    Pharm Res; 2024 Feb; 41(2):321-334. PubMed ID: 38291165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation.
    Jing ZY; Huo GL; Sun MF; Shen BB; Fang WJ
    Pharm Res; 2022 Feb; 39(2):399-410. PubMed ID: 35083639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Polysorbate Ester Fractions and Implications in Protein Drug Product Stability.
    Tomlinson A; Zarraga IE; Demeule B
    Mol Pharm; 2020 Jul; 17(7):2345-2353. PubMed ID: 32442382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation and Screening of Biopharmaceuticals using Multi-Angle Dynamic Light Scattering.
    Sharma A; Beirne J; Khamar D; Maguire C; Hayden A; Hughes H
    AAPS PharmSciTech; 2023 Mar; 24(4):84. PubMed ID: 36949219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and Sizing of Submicron Particles in Biologics With Interferometric Scattering Microscopy.
    Wong NA; Uchida NV; Dissanayake TU; Patel M; Iqbal M; Woehl TJ
    J Pharm Sci; 2020 Jan; 109(1):881-890. PubMed ID: 31160046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical Platform for Monitoring Aggregation of Monoclonal Antibody Therapeutics.
    Bansal R; Gupta S; Rathore AS
    Pharm Res; 2019 Aug; 36(11):152. PubMed ID: 31463609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of excipients impact on polysorbate 80 degradation in biopharmaceutical formulation buffers.
    Bai L; Zhang Y; Zhang C; Lu Y; Li Z; Huang G; Meng B
    J Pharm Biomed Anal; 2023 Sep; 233():115496. PubMed ID: 37285658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of protein sub-visible particles during powder grinding of a monoclonal antibody.
    Qian C; Wang G; Wang X; Barnard J; Gao JQ; Bao W; Wang H; Li F; Ingle RG; Fang WJ
    Eur J Pharm Biopharm; 2020 Apr; 149():1-11. PubMed ID: 32006605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a selective marker-based quantification of polysorbate 20 in biopharmaceutical formulations using UPLC QDa detection.
    Evers DH; Schultz-Fademrecht T; Garidel P; Buske J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Nov; 1157():122287. PubMed ID: 33069954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical Stability of Monoclonal Antibodies: A Review.
    Le Basle Y; Chennell P; Tokhadze N; Astier A; Sautou V
    J Pharm Sci; 2020 Jan; 109(1):169-190. PubMed ID: 31465737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled polysorbate 20 hydrolysis - A new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time.
    Graf T; Abstiens K; Wedekind F; Elger C; Haindl M; Wurth C; Leiss M
    Eur J Pharm Biopharm; 2020 Jul; 152():318-326. PubMed ID: 32445968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.
    Gikanga B; Chen Y; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(2):284-96. PubMed ID: 25868994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism.
    Tomlinson A; Demeule B; Lin B; Yadav S
    Mol Pharm; 2015 Nov; 12(11):3805-15. PubMed ID: 26419339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput screening and stability optimization of anti-streptavidin IgG1 and IgG2 formulations.
    Alekseychyk L; Su C; Becker GW; Treuheit MJ; Razinkov VI
    J Biomol Screen; 2014 Oct; 19(9):1290-301. PubMed ID: 25023322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Prediction of Free Fatty Acid Particle Formation in Biopharmaceutical Drug Products: Incorporating Ester Distribution during Polysorbate 20 Degradation.
    Doshi N; Martin J; Tomlinson A
    Mol Pharm; 2020 Nov; 17(11):4354-4363. PubMed ID: 32941040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.