These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 34282615)
1. Core-Shell-Structured Prussian Blue Analogues Ternary Metal Phosphides as Efficient Bifunctional Electrocatalysts for OER and HER. Zhou X; Zi Y; Xu L; Li T; Yang J; Tang J Inorg Chem; 2021 Aug; 60(15):11661-11671. PubMed ID: 34282615 [TBL] [Abstract][Full Text] [Related]
2. Heterostructured Core-Shell Ni-Co@Fe-Co Nanoboxes of Prussian Blue Analogues for Efficient Electrocatalytic Hydrogen Evolution from Alkaline Seawater. Zhang H; Diao J; Ouyang M; Yadegari H; Mao M; Wang M; Henkelman G; Xie F; Riley DJ ACS Catal; 2023 Jan; 13(2):1349-1358. PubMed ID: 36714053 [TBL] [Abstract][Full Text] [Related]
3. Prussian blue analog-derived nickel iron phosphide-reduced graphene oxide hybrid as an efficient catalyst for overall water electrolysis. Chang J; Hu Z; Wu D; Xu F; Chen C; Jiang K; Gao Z J Colloid Interface Sci; 2023 May; 638():801-812. PubMed ID: 36791478 [TBL] [Abstract][Full Text] [Related]
4. Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. Xuan C; Wang J; Xia W; Peng Z; Wu Z; Lei W; Xia K; Xin HL; Wang D ACS Appl Mater Interfaces; 2017 Aug; 9(31):26134-26142. PubMed ID: 28718291 [TBL] [Abstract][Full Text] [Related]
5. Hybrids of Cobalt/Iron Phosphides Derived from Bimetal-Organic Frameworks as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Zhang T; Du J; Xi P; Xu C ACS Appl Mater Interfaces; 2017 Jan; 9(1):362-370. PubMed ID: 27996250 [TBL] [Abstract][Full Text] [Related]
6. Double Metal Diphosphide Pair Nanocages Coupled with P-Doped Carbon for Accelerated Oxygen and Hydrogen Evolution Kinetics. Ji P; Jin H; Xia H; Luo X; Zhu J; Pu Z; Mu S ACS Appl Mater Interfaces; 2020 Jan; 12(1):727-733. PubMed ID: 31841300 [TBL] [Abstract][Full Text] [Related]
7. Bifunctional and Self-Supported NiFeP-Layer-Coated NiP Rods for Electrochemical Water Splitting in Alkaline Solution. Diao F; Huang W; Ctistis G; Wackerbarth H; Yang Y; Si P; Zhang J; Xiao X; Engelbrekt C ACS Appl Mater Interfaces; 2021 May; 13(20):23702-23713. PubMed ID: 33974401 [TBL] [Abstract][Full Text] [Related]
8. yMoO Zhao D; Ning S; Yu X; Wu Q; Zhou W; Dan J; Zhu Y; Zhu H; Wang N; Li L J Colloid Interface Sci; 2022 Mar; 609():269-278. PubMed ID: 34896828 [TBL] [Abstract][Full Text] [Related]
9. Nanoneedles of Mixed Transition Metal Phosphides as Bifunctional Catalysts for Electrocatalytic Water Splitting in Alkaline Media. Salvò D; Mosconi D; Neyman A; Bar-Sadan M; Calvillo L; Granozzi G; Cattelan M; Agnoli S Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839051 [TBL] [Abstract][Full Text] [Related]
10. Preparation of Yolk-Shell-Structured Co Yue S; Wang S; Jiao Q; Feng X; Zhan K; Dai Y; Feng C; Li H; Feng T; Zhao Y ChemSusChem; 2019 Oct; 12(19):4461-4470. PubMed ID: 31381812 [TBL] [Abstract][Full Text] [Related]
11. Arousing the Reactive Fe Sites in Pyrite (FeS Tan Z; Sharma L; Kakkar R; Meng T; Jiang Y; Cao M Inorg Chem; 2019 Jun; 58(11):7615-7627. PubMed ID: 31074996 [TBL] [Abstract][Full Text] [Related]
12. A processable Prussian blue analogue-mediated route to promote alkaline electrocatalytic water splitting over bifunctional copper phosphide. Chen J; Li Y; Ye H; Zhu P; Fu XZ; Sun R Dalton Trans; 2022 Sep; 51(35):13451-13461. PubMed ID: 35994011 [TBL] [Abstract][Full Text] [Related]
13. Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction. Lin YC; Aulia S; Yeh MH; Hsiao LY; Tarigan AM; Ho KC J Colloid Interface Sci; 2023 Oct; 648():193-202. PubMed ID: 37301144 [TBL] [Abstract][Full Text] [Related]
14. Metal - organic frameworks derived Ni Fu R; Jiao Q; Feng X; Zhu H; Yang C; Feng C; Li H; Zhang Y; Shi D; Wu Q; Zhao Y J Colloid Interface Sci; 2022 Jul; 617():585-593. PubMed ID: 35303642 [TBL] [Abstract][Full Text] [Related]
15. Increasing Electrocatalytic Oxygen Evolution Efficiency through Cobalt-Induced Intrastructural Enhancement and Electronic Structure Modulation. Zhang X; Zhang L; Zhu Y; Li Z; Wang Y; Wågberg T; Hu G ChemSusChem; 2021 Jan; 14(1):467-478. PubMed ID: 33043594 [TBL] [Abstract][Full Text] [Related]
16. Exceptional Performance of Hierarchical Ni-Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. Zhou Y; Wang Z; Pan Z; Liu L; Xi J; Luo X; Shen Y Adv Mater; 2019 Feb; 31(8):e1806769. PubMed ID: 30589134 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles. Sanchis-Gual R; Otero TF; Coronado-Puchau M; Coronado E Nanoscale; 2021 Aug; 13(29):12676-12686. PubMed ID: 34477618 [TBL] [Abstract][Full Text] [Related]
18. C-CoP hollow microporous nanocages based on phosphating regulation: a high-performance bifunctional electrocatalyst for overall water splitting. Li W; Cheng G; Sun M; Wu Z; Liu G; Su D; Lan B; Mai S; Chen L; Yu L Nanoscale; 2019 Sep; 11(36):17084-17092. PubMed ID: 31506661 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of Co Li H; Chen L; Jin P; Lv H; Fu H; Fan C; Peng S; Wang G; Hou J; Yu F; Shi Y Dalton Trans; 2020 May; 49(20):6587-6595. PubMed ID: 32363368 [TBL] [Abstract][Full Text] [Related]
20. Preparation of Hierarchical Cube-on-plate Metal Phosphides as Bifunctional Electrocatalysts for Overall Water Splitting. Ma J; Wang Y; Pan W; Zhang J Chem Asian J; 2020 May; 15(9):1500-1504. PubMed ID: 32167236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]