These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34282731)

  • 1. Eighty years of gene-for-gene relationship and its applications in identification and utilization of
    Kaur B; Bhatia D; Mavi GS
    J Genet; 2021; 100():. PubMed ID: 34282731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Avirulence Gene Cluster in the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp.
    Xia C; Lei Y; Wang M; Chen W; Chen X
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32554716
    [No Abstract]   [Full Text] [Related]  

  • 3. Co-evolutionary interactions between host resistance and pathogen avirulence genes in rice-Magnaporthe oryzae pathosystem.
    Singh PK; Ray S; Thakur S; Rathour R; Sharma V; Sharma TR
    Fungal Genet Biol; 2018 Jun; 115():9-19. PubMed ID: 29630984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular genetic mechanisms of interaction between host plants and pathogens.
    Yang W; Li SP; Cui HT; Zou SH; Wang W
    Yi Chuan; 2020 Mar; 42(3):278-286. PubMed ID: 32217513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics.
    Mota APZ; Fernandez D; Arraes FBM; Petitot AS; de Melo BP; de Sa MEL; Grynberg P; Saraiva MAP; Guimaraes PM; Brasileiro ACM; Albuquerque EVS; Danchin EGJ; Grossi-de-Sa MF
    Mol Genet Genomics; 2020 Jul; 295(4):1063-1078. PubMed ID: 32333171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogen-informed breeding for crop disease resistance.
    Li Q; Wang B; Yu J; Dou D
    J Integr Plant Biol; 2021 Feb; 63(2):305-311. PubMed ID: 33095498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies.
    Mores A; Borrelli GM; Laidò G; Petruzzino G; Pecchioni N; Amoroso LGM; Desiderio F; Mazzucotelli E; Mastrangelo AM; Marone D
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains.
    Crété R; Pires RN; Barbetti MJ; Renton M
    Sci Rep; 2020 Nov; 10(1):19752. PubMed ID: 33184393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens.
    Rimbaud L; Papaïx J; Rey JF; Barrett LG; Thrall PH
    PLoS Comput Biol; 2018 Apr; 14(4):e1006067. PubMed ID: 29649208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance gene cloning from a wild crop relative by sequence capture and association genetics.
    Arora S; Steuernagel B; Gaurav K; Chandramohan S; Long Y; Matny O; Johnson R; Enk J; Periyannan S; Singh N; Asyraf Md Hatta M; Athiyannan N; Cheema J; Yu G; Kangara N; Ghosh S; Szabo LJ; Poland J; Bariana H; Jones JDG; Bentley AR; Ayliffe M; Olson E; Xu SS; Steffenson BJ; Lagudah E; Wulff BBH
    Nat Biotechnol; 2019 Feb; 37(2):139-143. PubMed ID: 30718880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunity and starvation: new opportunities to elevate disease resistance in crops.
    Oliva R; Quibod IL
    Curr Opin Plant Biol; 2017 Aug; 38():84-91. PubMed ID: 28505583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops.
    Deng Y; Ning Y; Yang DL; Zhai K; Wang GL; He Z
    Mol Plant; 2020 Oct; 13(10):1402-1419. PubMed ID: 32979566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAseq and Proteomics for Analysing Complex Oomycete Plant Interactions.
    Burra DD; Vetukuri RR; Resjö S; Grenville-Briggs LJ; Andreasson E
    Curr Issues Mol Biol; 2016; 19():73-88. PubMed ID: 26364238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Engineering Broad-Spectrum Disease-Resistant Crops.
    Tian J; Xu G; Yuan M
    Trends Plant Sci; 2020 May; 25(5):424-427. PubMed ID: 32304654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avirulence (AVR) Gene-Based Diagnosis Complements Existing Pathogen Surveillance Tools for Effective Deployment of Resistance (R) Genes Against Rice Blast Disease.
    Selisana SM; Yanoria MJ; Quime B; Chaipanya C; Lu G; Opulencia R; Wang GL; Mitchell T; Correll J; Talbot NJ; Leung H; Zhou B
    Phytopathology; 2017 Jun; 107(6):711-720. PubMed ID: 28168930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemiology and disease-control under gene-for-gene plant-pathogen interaction.
    Ohtsuki A; Sasaki A
    J Theor Biol; 2006 Feb; 238(4):780-94. PubMed ID: 16085107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What lies ahead in post-genomics era: a perspective on genetic improvement of crops for fungal disease resistance.
    Bhadauria V; Banniza S
    Plant Signal Behav; 2014; 9(4):e28503. PubMed ID: 24690770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Omics Approach to Identify Factors Involved in Brassica Disease Resistance.
    Francisco M; Soengas P; Velasco P; Bhadauria V; Cartea ME; Rodríguez VM
    Curr Issues Mol Biol; 2016; 19():31-42. PubMed ID: 26363709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oomycete interactions with plants: infection strategies and resistance principles.
    Fawke S; Doumane M; Schornack S
    Microbiol Mol Biol Rev; 2015 Sep; 79(3):263-80. PubMed ID: 26041933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.