These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34282770)

  • 1. An Electro-Oculogram Based Vision System for Grasp Assistive Devices-A Proof of Concept Study.
    Roy R; Mahadevappa M; Nazarpour K
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34282770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and assessment of a hand assist device: GRIPIT.
    Kim B; In H; Lee DY; Cho KJ
    J Neuroeng Rehabil; 2017 Feb; 14(1):15. PubMed ID: 28222759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation.
    Dosen S; Cipriani C; Kostić M; Controzzi M; Carrozza MC; Popović DB
    J Neuroeng Rehabil; 2010 Aug; 7():42. PubMed ID: 20731834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated control of hand transport and orientation during prehension movements.
    Desmurget M; Prablanc C; Arzi M; Rossetti Y; Paulignan Y; Urquizar C
    Exp Brain Res; 1996 Jul; 110(2):265-78. PubMed ID: 8836690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Vision-Driven Collaborative Robotic Grasping System Tele-Operated by Surface Electromyography.
    Úbeda A; Zapata-Impata BS; Puente ST; Gil P; Candelas F; Torres F
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object.
    Mason CR; Theverapperuma LS; Hendrix CM; Ebner TJ
    J Neurophysiol; 2004 Jun; 91(6):2826-37. PubMed ID: 14762155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping.
    Fukui T; Inui T
    Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-Controlled Functional Electrical Stimulation Therapy With Automated Grasp Selection: A Proof-of-Concept Study.
    Likitlersuang J; Koh R; Gong X; Jovanovic L; Bolivar-Tellería I; Myers M; Zariffa J; Márquez-Chin C
    Top Spinal Cord Inj Rehabil; 2018; 24(3):265-274. PubMed ID: 29997429
    [No Abstract]   [Full Text] [Related]  

  • 11. Vision-Based Human-Machine Interface for an Assistive Robotic Exoskeleton Glove.
    Guo Y; Xu W; Ben-Tzvi P
    Res Sq; 2023 Aug; ():. PubMed ID: 37693405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of human grasping behavior: object characteristics and grasp type.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(3):311-23. PubMed ID: 25248214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of object shape and visual feedback on hand configuration during grasping.
    Schettino LF; Adamovich SV; Poizner H
    Exp Brain Res; 2003 Jul; 151(2):158-66. PubMed ID: 12783144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. i-MYO: A multi-grasp prosthetic hand control system based on gaze movements, augmented reality, and myoelectric signals.
    Shi C; Zhao J; Yang D; Jiang L
    Int J Med Robot; 2024 Feb; 20(1):e2617. PubMed ID: 38536731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of human grasping behavior: correlating tasks, objects and grasps.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(4):430-41. PubMed ID: 25532148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vision-aided grasp classification: design and evaluation of compact CNN for prosthetic hands.
    Sharma U; Vasamsetti S; Chander SA; Datta B
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38697026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of perception of the hand's aperture in a grasp.
    Butler AA; Héroux ME; van Eijk T; Gandevia SC
    J Physiol; 2019 Dec; 597(24):5973-5984. PubMed ID: 31671476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Detection of Myocontrol Failures Based upon Situational Context Information.
    Heiwolt K; Zito C; Nowak M; Castellini C; Stolkin R
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():398-404. PubMed ID: 31374662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.